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Abstract

Interest in the effect of sampling and temporal aggregation on empirical results in
macroeconomics and finance is growing. While the effects on the order of ARIMA
representations are well known in the literature, the effects on model parameters are not, with
a few exceptions. This paper presents general expressions for the effects on parameter values
that can be useful for researchers in this area. Applications to IMA(1,2) processes and to the
cross-correlations of two IMA(1,1) processes are illustrated.
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A Kit of Results for Sampled and Temporally Aggregated Models

1. Introduction

A number of papers have recently appeared in the literature analyzing the effects of
sampling and temporal aggregation on empirical results in macroeconomics and finance. See,
among others, Grossman, Melino and Shiller [1987], Naik and Ronn [1988], Breeden,
Gibbons and Litzenberger [1989], Longstaff [1989], and Ermini [1991, 1992a, 1993] for
applications to the consumption-based capital asset pricing model; Christiano and
Eichenbaum [1987], Ermini [1988, 1989, 1992¢, 1992d], and Christiano, Eichenbaum and
Marshall [1991] for applications to the consumption function and the permanent income
hypothesis; Ermini [1989, 1992b], and Heaton [1989] for studies on the durability of non-
durable goods; Rossana and Seater [1989] for studies on manufacturing-sector wages;
Amemiya and Wu [1972], and Luetkepohl [1984] for the effects on forecasts.

Sampling and temporal aggregation affect both the parameters of the data generating
mechanism and the order of its ARIMA representation. While the effects on the order of the
ARIMA representation are well known in the literature (for a comprehensive treatment, see
Weiss [1984]; for previous work, see, among others, Tiao [1972], Tiao and Wei [1976], and
Wei [1981]), the effects on the values of the parameters are not, except for the case of
random walks (Working [1960]) and IMA(1,1) processes (Ermini [1989]). The purpose of this
paper is to provide practical closed-form expressions for the effects on parameter values that
can be useful to researchers in this field, and to collect in a concise reference results found in
scattered sources. As the focus here is limited to linear models, the analysis is confined to
second moments; to increase readability, these results are gathered in the form of tables
(section 2). Section 3 gives some examples of application, deriving the effects of sampling and
temporal aggregation on the cross-correlations of two IMA(1,1) processes and on the
parameters of IMA(1,2) processes. Some of these results are utilized in Ermini [1992a, 1993]
to study the impact of habit formation and durability of non-durable goods on observed
expenditures series under temporal aggregation. The results on cross-correlations are applied
in Ermini [1991]} to the bivariate system consumption-asset prices to propose a solution to the
equity premium puzzle.

2. Effects of sampling and temporal aggregation on second moments

Let {X;} be the original series, generated at shorter intervals (of equal length), and let
{X,} be the observed series, generated from the former at longer intervals (again, of equal
length) by sampling or by temporal aggregation. Let m be the sampling ratio, that is the ratio
between the longer interval of observation and the shorter interval of generation; in what
follows, m is an integer equal to or greater than one. Sampling generates the series X, by
selecting from the original series values distanced at m shorter periods. For example, using
the index ¢ to refer to the longer interval, X, = X,,,, and X, { = X,;; - Temporal aggregation
generates the series X, by summing m adjacent values of X, and selecting from this
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aggregated series values distanced at m periods. For example, X, = ¥ X, and X; 4 =
j=0

m-1

Y Xutumk-j- For this reason, temporal aggregation is more properly called non-overlapping
j=0

temporal aggregation. The literature often considers also the case of time averaging. This
case, however, will not be considered here, as a time averaged series simply corresponds to a
temporally aggregated series divided by m, and thus the effects of time averaging are easily
derived from the effects of temporal aggregation. In fact, the scaling factor 1/m? introduced

into second moments disappears when considering the effects on correlations.

Table 1 reports the relation between the observed series and the original series for various
cases. As in macroeconomics models are often formulated in first-differences, table 1
explicitly reports these relations for first differences of the variables as well. The temporal

m-1
aggregation operator, 7,,(B), is defined as 3 B/, or equivalently as (1-B™)/(1-B), where B
j=0 _
is the lag operator (e.g. such that X, ; = B*X,). Thus, under sampling AX, = X, - Xintm =
(1-B™)X,,, = (1-B™)/(1-B) AX,,. Similarly under temporal aggregation, AX, =
Tm (B)(er'Xm!-m) = l Tm (B) | 2 Aer-

Table 2 reports the effects of sampling and temporal aggregation on unconditional
autocovariances, From these expressions, we can derive some of the results about the order
of ARIMA representations already obtained by Weiss [1984]. For example, as for a stationary
series tljm R.(m7r) = 0, it is seen that for m going to infinity sampling transforms any
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stationary series into white noise; similarly, sampling transforms any I(1) series into a random
walk.

Table 3 reports the effects of sampling and temporal aggregation on unconditional
bivariate cross-covariances, for three cases: both series are sampled; both series are
temporally aggregated; one series is sampled and the other is temporally aggregated.

3. Examples of Application

(@) Cross-correlations between two IMA(1,1) processes with orthogonal innovations.
Consider the bivariate system

AX =a+eg +vg (D
AY =B+ + b1

with g, and #; orthogonal innovations processes, e.g. such that E (¢, %) = w, E(g; n;) = 0 for
all £ #5. Then R acay(0) = w(1+46), Racay(1) = w, Racay(-1) = &, and R pepy(r) = 0 for all
|| > 1.

Consider first the case in which both series are sampled. Then
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R xzr5(1) = mR peny(m7) + 2 (m-j) [Raeay(mr+j) + Racay(mr-j)]. 2
i=1

Some algebra shows that for the contemporaneous cross-covariance, R xza7(0) = w(1++6)m
+ w(m-1) + wb(m -1), which for m sufficiently big reduces to w(1++6+~+6)m. Also, it can
be shown that the sampling ratio m does not affect the one-lagged cross-covariance, so that
R xeny(£1) = Racay(1). Finally, R xznp(r) = 0 for all | 7| > 1. Note that as the one-
lagged cross-covariance is independent on m, but the contemporaneous cross-covariance is
linearly increasing with it, the one-lagged coefficient of cross-correlation, paen;(1) =
R szn5(1)/R szaz(0), goes to zero as m goes to infinity. This result is explained by the limiting
result anticipated in the previuous section whereby any I(1) series under sampling is
transformed into a random walk as m goes to infinity.

Consider now the case in which both IMA(1,1) processes are temporally aggregated.
Then '

R geng(r) = m RAxAy + 2m El (M-} [Racay(mr+) + Racpy(mr-j)] + 3)
j

El El (m-))(m-i) [Racap(mr+j +i) + Racpy(mr-j-i) +
j=1

RAxAy(m-r+j-i) + RAxAy(m'r—j +I)]

Consider the contemporaneous cross-covariance. The second term in the right-hand side of
(3) is 2m (m-1)[R aearp(1) + Racay(-1)]- Regarding the third term, both Rawa,(j +i) and
R pcay(-j-i) are zero for all j,i > 1. For the remaining two terms the double summation

becomes 2R .a,(0) 2 (m=f)* + 2[R acay(1) + Rpcay(-1)] g (m-j)(m-j +1). With some

algebra one gets R AxA—(O) = W[(1+¥0)m (2m?+1) + ('7+6)?Jn (m -1)]/3, which reduces for
m sufficiently big to -3—w(1 +~6+~y+8)m3. Similarly, after some tedious calculations, for the

one-lagged cross-covariance one gets R xeaz(1) = w[(1+~6)m (m3-1) + 4(m> +3m?+2m) +
§(m>-3m? +2m)]/6, which for m sufficiently big reduces to w(1+~6+~+8)m?>/6. Note that
for m sufficiently big the cross-covariogram becomes symmetric, Finally, it can be shown that
R szay(r) = Ofor all [7| > 1. Regarding the first-lag cross-correlation pazn;(1), it is easy to
see that its value goes to 0.25 as m goes to infinity. Remarkably, this limit is identical to the
limit of the first-lag autocorrelation of an IMA(1,1) process under temporal aggregation (see
below). These results are summarized in table 4.

(b) Auto-correlations of an IMA(1,2) process. Consider the process
AX =ateg+mer+tmes, )

with & an innovation process of variance 6,2, and R, (0) = (1 + v2 + %,2)0.%, R Aac(2]) =
(11 + M 1)oeZ, Ra(£2) = 1o, and R (r) = Ofor all |r | > 2. Consider first the case of
sampling. From table 2
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m-1
Ractr) = mRac(mn) + % (mo]) Ra(mr+]) + Racomr)). )

j=
With some algebra, and introducing the auto-correlations of the original process, pa,(7) =
R (1) /R A¢(0), one gets for the process variance Ra{0) = Ra (0)[m + 2(m-1)pa.(1) +
2(m 2)pac(2)], which for a sufficiently big sampling ratio m reduces to
[142pa.(1) +2pA.(2))m. For the one-lagged auto-covariance, it can be shown that R xz(1) =
R (1) + 2R A,(2), independent on the sampling ratio. Finally, one finds that R a.(r) = 0 for
all |r| > 1. This result shows that sampling transforms an IMA(1,2) process into an
IMA(1,1) process at any sampling ratio m. Furthermore, as the first-lag autocovariance is
independent on m, but the variance is linearly increasing with it, the first-lag coefficient of
auto-correlation, paz(1) = R az(1)/R x:(0), goes to zero as m goes to infinity, thus confirming
the limiting result already anticipated in section 1 that sampling transforms any IMA(1,2) into
a random walk. These results are summarized in table 4. By setting pa,(2) = 0 and pa (1) =
0, the effects of sampling on IMA(1,1) processes and on random walks are also easily derived.
Particularly, a random walk under sampling remains a random walk with a variance linearly
increasing with the sampling ratio; an IMA(1,1) under sampling remains an IMA(1,1) for
finite sampling ratios, and becomes a random walk for m going to infinity.

Consider now the case of temporally aggregating process (4). From table 2, with some
algebra one obtains the expressions reported in table 5. Note that the lag-two auto-covariance
is unaffected by the sampling ratio, and thus under temporal aggregation an IMA(1,2) process
remains IMA(1,2) for finite sampling ratios, but becomes an IMA(1,1) as m goes to infinity.
Regarding the limiting effects on the first-lag, it is easily seen that for a sufficiently big

M RAOIL + 2oa1) + 20ac(2)), and Ree(1) =

m3R AT + 2pa(1) + 20a.(2)), from which it is seen that the limit of the first-lag

sampling ratio, we have Rxx(0) =
L
6
autocorrelation paz(1) = 0.25, result already obtained in Working [1960] and Ermini [1989]

for random walks and IMA(1,1) processes respectively.

4, Conclusions

This paper has presented practical closed-form expressions for the effects of sampling and
temporal aggregation on the parameters of ARIMA models. These expressions are applied to
two popular models in macroeconomics and finance, the univariate IMA(1,2) process and the
bivariate IMA(1,1) process. Regarding the former, it is found that an IMA(1,2) process under
temporal aggregation remains an IMA(1,2) process for finite sampling ratios (with
decreassing lag-two autocorrelation), and in the limit as the sampling ratio m goes to infinity,
it becomes an IMA(1,1) with a first-lag autocorrelation of 0.25. Regarding the latter, it is
found that the first-lag cross-correlation also has the 0.25 limit as the sampling ratiol goes to
infinity.
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TABLE 1 RELATIONS BETWEEN THE ORIGINAL SERIES X, ANB THE
SAMPLED OR TEMPORALLY AGGREGATED SERIES X, (*)
level first differences
sampling )?, = Xp Af, = Tn(B) AX,,
temp. aggregation X, = Tpy(B) X,y AX, = | Tp(B) |2 AX

j=0

T,(5) = 32 B = (1LB™)/(1-)

| TaB) |2 =m + ' (m )@ + BY)
i=1

(| Tn(B) | %) = m®

m-l s - m—lm-l . - . - P P
+2m Y (m-j)B +BT) + X (m-j)m-i)BH +BY*D BT 4 BiY)
j=1 j=1i=1

TABLE 2 EFFECTS ON UNCONDITIONAL AUTOCOVARIANCES
(R,(r) = E(Z-EZ,)(Z, +EZ,,))
level first differences
sampling RA{7) = R.(mr) Rup(r) = | Tu(B) | 2 Rac(mr)
temp. aggregation ReAr) = | Tu(B) |2 Re(m7) Rz(r) = (| T(B) |2)? Ra(mr)

(") The index ¢ refers to the longer interval of the sampled or temporally aggregated series.
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TABLE 3 EFFECTS ON UNCONDITIONAL CROSS-COVARIANCES
(Row{1) = E(Z,-EZ,)(W,-EW,))
level first differences
both sampled Rg(r) = Ry(m7) Ruzeg(r) = | Tu(B) | * Racay(mr)

one sampled
one temp. ager. R{r) = T(B) Ry(mr) Ruiog(7) = Ty (B) | Tu(B) |2 Racay(mr)

both temp. aggregated Rg(r) = | Tn(B) |? Ry (m7) R gng(r) = (| Tn(B) |92 R acay(mr)
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TABLE 4 EFFECTS ON CROSS-COVARIANCES OF TWO IMA(1,1) PROCESSES
WITH ORTHOGONAL INNOVATIONS (%)
any m m>>1 ‘ lim
m=—oo
{(a) Both Series Sampled

R xxrg(0) mw(1+78 +y+8) - w(y+6) mo(l+8+v+8)

R gy (1) wry wy

R s (-1) wh wd

paery(1) 0

(b) Both Series Temporally Aggregated

R s5225(0) %w[(uqa)m (2m?+1) + (y+6)2m (m?-1)] -g-um:3(1+'76+f7+6)

R (1) %w[(1+76)m (m2-1)+4(m3+3m? +2m) +6(m>-3m? +2m)] -éwm3(1+'76+1+6)

R serg(-1) %w[(1+16)m (m2-1)+6(m>+3m* +2m) +4(m33In? +2m)] %W?13(1+75+7+6)

Paray(*1) 0.25

(MAX =+ & + 9

AY = B+ + bny,y

E(em) = w,E(gm;) = Ofort#s.
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TABLE 5|EFFECTS ON AUTO-COVARIANCES OF IMA(1,2) PROCESSES
any m ’ m>>1 1 lim
(@) Under Sampling
R (0) R ad{Q)lm +2(m -1)pac(1) +2(m -2)par(2)] MR a:(0)[1+20:(1) + 2p5(2)]
R (1) R (0)[pac(1) +2p2(2)] R ac(0)[pac(1) + 27 (2)]
R {(2) 0 0
pex(1) 0
(b) Under Temporal Aggregation
Res(0) | SRalO)[2+m +4m (1 Dpac(1)+202m* +11 3)pa(D)] | 2R sclO)[1+ 2o (1) + 2o0e(2)]
R (1) %RN(O)[m 3m +2m (m? + 2)pac(1) +2(m> + 11m -12)p5,(2)) %m 3R 4 (0)[1+20a: (1) +204:(2)]
R 5(2) Ra(2) Ra(2)
ps(1) 0.25
pee(2) 0




