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1. INTRODUCTION.

Schur (1911) established global bounds for eigenvalues for Hadamard
product, which was discussed later by Styan (1973) and Horn (1990)
in their respective survey articles on Hadamard product. However,
the global bounds established by Schur are nof narrow enough to be
useful under certain circumstances. In this note, we establish the
narrower bounds, and discuss an econometric example to demonstrate

its usefulness in establishing consistency of an estimator.

2, DERIVATION OF UPPER AND LOWER BOUNDS8 FOR EIGENVALUES.
Writing a Hadamard product,
H = HOH, | (1)

where H,(TxT), H,(TxT) > 0 ( i.e., positive-definite ).

Then, we can rewrite H as
H = 5'(H/®H,)S (2)

where ® denotes the Kronecker product as usual, and S is the TxT



matrix the i-th column

position and ¢ elsewhere

of which has 1 in its

(See Amemiya, p 462).

2
((i-1)T + i)th

Define matrices W, and W,

W, = c®I,; W,= (3)

1,Qc,

where ¢, and C, are defined such that
ClHC, = Aj; C/C, = CCl =TI CHC, =Ay; CC, =G0 =TI,
in which A, and A, are TxT diagonal wmatrices consisting of

eigenvalues of H, and H,, respectively.

Hence, we can rewrite H in (2) as
H = s'(H,QH,)s = s'WW|H,OHLWW{S = S'W,(ABHWS . (4)
Noting that A®H, is positive-definite (without the proof),

Nain (Hy) +(TBH,} < A,®H, < N, (H,) -(I,2H,)

where A, (+) and A, () , respectively, are minimum and maximum

eigenvalues of the argument matrix,



hence

Main (Hy) *S'W(TBHNW]S < H € Ny (H,) *S'WIBHW'S . (5)

Since
S'W(I,RHW(s = s'(I,BH,)S = T,0H, = A(H,)

where A(-) is the diagonal matrix consisting of diagonal elements

of the argument matrix,
we can rewrite (5) as

Ao (H) A(H) < H < A (H)-A(H,) . (6)

Based on Amemiya (p. 460), (6) implies that
)\min(Hl)'ai(Hz) s )\i(H) < )\m(Hl)'ai(Hz) (7)

where «,(+) denotes the i-th largest diagonal element of the

argument matrix.

Subscripts 1 and 2 in (7) are interchangeable, which would be the



4
case if we replaced W, in (4) with W,. Therefore, generalizing (7),

A (H) roy(H) < N(H) < A, (H) aH) (r,s =1,2; r #s) (8)
Summmarizing what has been discussed so far formally as a theoren,

(Btronger Schur's Theorem): Let H = H,OH, where both H, and H, are

TxT positive definite matrices. Then,
)\min (Hr) .ai(H_g) S Ai (H) S A1;|“x(‘Hl,r-) 'ai(H;) (rfs = 112; r # S)

where A, (+) denotes the eigenvalues of the argument, and «;(+) the

i-th largest diagonal element of the argument.

From the above theorem readily follows the Schur's Theorem (1911)

as a corollary:

Noi (B} v (H) < N(H) < A (H) -, (H) (r,s =1,2; r#s)
(9)

" discussed in details in Styan (1973).

The lower and upper bounds in (8) defines narrower bounds for

eigenvalues than established by Schur, therefore more useful.



3. AN APPLICATION.

The stochastic parameter variation model discussed in Cooley and
Prescott (1978), for example, has the disturbance covariance matrix

which includes a Hadamard product of two (non-identity) positive-

definite matrices. The model, after a linear transformation, can be

expressed as

Yy = XBr, +p (10)
for which

E(uu’) =0 ;

0=+ (1-y)I (11)

where

AOR; A

(a;); a@; = min(T-i+1, T-j+1) (i,j=1,...,T) ;

(2,17 a; = min(T-1i+1, T-j+1) ;
/
X; S X;
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Suppose we are interested in finiding the order of S =X A(07') .
i=1

By virtue of (8),

MN(Q) < A, (R)-a;(A) = A (R)i , ' (12)



and eigenvalues of 2 in (11) can be written as

N(R) = yN(Q) + (1-7) . (13)

Based on (12) and (13), we can define the lower bounds for A,({l)

as

1 1
N S VAR T () (14)

Noting that

- -y - 1 .
s = A (al) 27\.-(_“)'

A (R} € S\(R) = tr(R) =T ;

0<vy=<1,

from (14) readily follows that

r .
1
Sz r = 5 15
N E A e it
A simple analytical expression for S; is impossible for small
sample T, hence we have to consider S; for asymptotic T. Denoting

the asymptotic T by 71 ,

. . ‘ 1
lim 5, = 1im 3 ,
T+ L T+ ')’)\M{R) <1+ (1—7)




Jlll 1 dx
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Matrix R in (16) is basically a lag correlation coefficient matrix
in which diagonal elements are unity and off-diagonals less than
unity but taper off as the displacement increases, hence A, (R) is
likely to be a finite number. Therefore, assuming that A__(R) is
finite, we can consider the order of S, over the range of v :

(a). If y =1 , then from (15) readily follows

S; = ﬁlnr = 0(lnt) = ; | (17)

(b). If 0 <+ <1, then also from (16) readily follows

. _ 1 Ve (R) ) _ —w -
S; = mln[‘!’hﬂ_‘m:ﬂ = 0(1lnt) = o ; (18)

(¢). If 4 =0, (16) is not defined. As an alternative, we can



consider S, as vy - 0' . Defining

= 7Y
6 1—_‘YXM(R)T r (19)

we can rewrite (16) as

. . (1-y) (1+8) "
e T T K ® (1) - 2o

from which follows

lim S, =7 lim 1ng + &y
0 0

T 1lim 1na + §y!4
im Ingd =+ &)

T lne

=T =0 , (21)

Based on the order of S;° in (16), we may state in general that S,
is in the order of 1InT to T, which completes the proof that Bw is

consistent.

3. CONCLUDING REMARK.



9
The global upper bound for eigenvalues as established in Schur's

Theorem in (9) does not allow for the lower bound narrow enough to
establish the consistency _of Bﬂ,, whereas the narrower bounds

introduced in this note does.

However, if both A (R) and A (R) are are finite or both in the
same order, then the order of § is in the same order as the upper
and lower bounds for S§. Otherwise, the order of the lower bound for
S may not be exactly in the same order as S. If that is the casé,

the narrower bounds introduced may not be as useful.
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