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Abstract

This paper formulates dynamic R&D investment decisions of private firms
as an optimal stochastic control problem. It derives explicitly R&D invest-
ment decision rule and the cross equations parameter restrictions imposed
by the rational expectations hypothesis, using the Riccati equations only and
not requiring the use of Wiener-Kolmogorov prediction formula. Identifica-
tion and estimation of the structural parameters are essential for evaluating
policies such as R&D subsidies, firm size, market concentration so that the
evaluations of these policies stand against Lucas critique. We find conditions
under which the structural parameters are identified; we then discuss econo-
metric procedures for using aggregate time series data or panel data on firms
to deal with unobserved technological knowledge, to estimate the structural
parameters, and to test the model.
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Firm’s R & D Behavior Under Rational Expectations

1 Introduction

It has now been well established that technological change is a major source of
growth. As in the case of physical capital, returns on industrial research and de-
velopment (R&D) investments in the private sector will depend upon the evolution
of market conditions and public policies among other factors. Thus the Lucas cri-
tique [1976] on policy evaluation applies to R&D decisions, namely a firm’s R&D
investment decisions under uncertainty will depend upon its expectations about fu-
ture market conditions and policy changes, and therefore its R&D decision rule
will react to the changes in the stochastic processes of these factors. The point
of the critique is that instead of estimating a R&D decision rule by throwing in
arbitrarily some policy variables as regressors, one should model and estimate the
parameters of the firm’s objective function and the stochastic processes that con-
stitute the environment in which the firm operates. To that end, we need tractable
dynamic economic models of R&D investment decisions which lend to estimation
and testing using available econometric techniques. Hansen and Sargent [1981]
among others began such a line of research to model aggregate labor supply deci-
sions over time of a representative agent. We follow their lead to provide a tractable
model of R&D along the same line.

What makes tractable modeling of R&D investments difficult is that the output
of this activity, technological knowledge, possesses many properties of a com-
modity for which standard economic theory fails. For instance, knowledge is an
intangible, indivisible and inappropriable (i.e., difficult to institute a property right)
commodity and exhibits externalities in its production and use. Therefore, unlike
the physical capital, the market prices for knowledge do not exist which could
guide R&D investment decisions (Arrow [1962], Griliches[1979], Nelson [1982]).
The rate of accumulation of technological knowledge of a firm acquired by means
of R&D investments will depend upon the following factors:

(1) Firm size, intensity of rivalry or competition (Schumpeter [1934, 1950]).

(2) Complete uncertainty about the profitability of a new product, if it is a product
innovation, and partial uncertainty about the shifts in demand for the product
if it is a process innovation (Schmookler [1966]).

(3) R&D capabilities or ”strength of knowledge” for efficient R&D search for
firms having different ”science bases” (Rosenberg [1976], Nelson [1982],
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Nelson and Winter [1977,1978], Evenson and Kislev [1976]).

(4) Government policies such as R&D tax credits, MRTP (monopoly restrictive
trade practices), licensing schemes, patent laws, investments in basic re-
search affecting (1)-(3).

Theoretical models of R&D have considered most of the above aspects of tech-
nological knowledge, and studied the effects of government policies on R&D sub-
sidies, market concentration, firm size (Dasgupta and Stiglitz [1980a&b among
others, see Kamien and Schwartz [1981] for a survey of these papers). The empir-
ical research, on the other hand, has been carried out mainly in two lines ignoring
many of the above aspects of R&D. One set of studies is concerned with testing
the Schumpeterian hypothesis regarding the effects of firm size and intensity of
rivalry on the pace of R&D investments within a static framework (see Levin and
Reiss [1984], Kamien and Schwartz [1981] for an account of these studies). The
other set of studies is concerned with the effects of R&D expenditures on produc-
tivity growth (Griliches [1984], Mohnen [1992], Mairesse and Sassenou [1991],
Raut [1995] for accounts of these studies for developed and developing countries).
Although many studies are directed toward policy analysis, these studies do not
formulate R&D investments using a dynamic economic model and then estimate
the model parameters.1

In this paper we present a dynamic economic model of R&D investments that
incorporates the above aspects of technological knowledge. We explicitly model
the process of knowledge creation, as in Griliches [1979], and Pakes and Griliches
[1984]. To impute a value to technological knowledge in each period, we assume
that the timing of an innovation is unknown; however, the higher is the stock of
knowledge, the higher is the probability of its taking place in any period. By ap-
plying techniques from statistical decision theory to this setup, we impute a value
to stock of technological knowledge. We then show that the firm’s R&D decision
problem could be represented by an optimal stochastic control problem (see section
2, for details).

Hansen and Sargent [1981] gave up dynamic programming method for solving
their cost-of-adjustment model of labor supply decisions on the grounds that the
matrix Riccati equation did not lead to a closed form solution. They proposed an
alternative method that uses Euler equation, Transversality condition and Wiener-
Kolmogorov prediction formula to compute a close form optimal decision. I show

1Pakes [1984], however, goes a step closer in this direction; instead of deriving the reduced form
solution with cross equations restrictions imposed by rational expectations, he, however, parameter-
izes the reduced form solution for estimation.
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in this paper, however, that when the control variable is one dimensional (which
was the case in their model too) it is possible to derive a close form solution solely
from the matrix Riccati equation, and thus the Wiener- Kolmogorov prediction
formula is not required for this purpose; this is done in section 3.

In section 4, we investigate the identification of the parameters of the objective
function and the stochastic processes of the environment. We show that while the
structural parameters are unidentified when the environment is represented by a
first order auto-regressive process, when the environment is represented by an au-
toregressive process of order two or higher, the system is generally over identified;
and thus one can estimate all the structural parameters. In section 5, we describe
how the decision rule and the cross equation restrictions change when we include
other exogenous variables in the information set that Granger cause the stochastic
processes representing the environment.

Previous sections are based on the assumption that technological knowledge
is observable. In section 6, we relax this assumption and give a closed form so-
lution based on noisy measurements of technological knowledge. In section 7,
we consider various econometric strategies that could be adopted to estimate the
structural model and use the overidentified restrictions to test the model. I have
estimated in Raut [1988] an unrestricted reduced form decision rule using panel
data of Indian private firms. Using data from developed countries, further empiri-
cal research along this line will shed more light about the actual decision making
process of R&D investments of the private firms.

2 The Basic Model

2.1 Technological Knowledge

There are at least three different ways in which technological knowledge has been
conceptualized in the literature. Arrow[1962] defines technological knowledge as
information about the states of nature. In his framework, investment in R & D is
visualized as acquiring more knowledge about the states of nature to improve one’s
subjective beliefs about the possibility of reaping an innovation, based on Baysian
learning mechanism.

Nelson [1982] treats technological knowledge as ”capability for efficient search”.
In his models, R&D is viewed as search for a given target, say for instance, a prod-
uct innovation or a process innovation. The search could be targeted in different
directions but with stochastic outcomes. R&D investments are related to the num-
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ber of elements that are expected to be drawn for efficient searching before the
desired outcome is achieved. The main point of this notion of technological knowl-
edge is that it is the strength of knowledge that determines how much R&D efforts
are expected to be successful as opposed to Schmookler’s viewpoint [1966] that
the pay-off determines R&D investments. Nelson [1982], and Nelson and Win-
ter[1982] formalized and gave more operational content to this line of reasoning
that originated in the works of Rosenberg [1976]. Nelson also studied the relation-
ship between knowledge and innovation explicating the public good aspect, the
externalities in the production, and to the sources of technological knowledge.

Griliches[1979] gave more empirical content to his definition of technological
knowledge. Griliches [1979,1984] treated the stock of technological knowledge
as one of the factors of production analogous to stock of physical capital. Like
capital stock, it depreciates and becomes obsolete over time, but can replenish over
time with R&D investments. He used a production function framework to study
the contribution of R&D on productivity growth at the firm level for U.S. firms. To
model the spill-over effect empirically, he introduced the notion of technological
distance between two firms.

My definition of technological knowledge draws from all three notions. I view
accumulation of technological knowledge as acquisition of more information about
the states of nature–information about product improvements or process improve-
ments; I also view it as a deliberate economic activity similar to investment in phys-
ical capital. A set of R&D inputs adds to the stock of knowledge which might be
immediately used or might be useful for further information production. However,
unlike in the case of investment in physical capital, I assume here that the marginal
rate, b, at which a unit of R&D adds to the stock of knowledge varies from indus-
try to industry depending on the R&D capability or strength of knowledge or the
science base of that industry. There are various sources for spill-over effects, e.g.,
government’s investment in basic research, (which brings technological change to
the process of technological change, so to speak), technological knowledge of other
domestic or foreign firms, the strength of which depends on the patent law. I as-
sume all these constitute a constant amount of spill over knowledge in each period.
More formally,

z�t�� � a�z�t � bRt � c� � w�t� t � � (1)

where,
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z�t = our firm’s stock of knowledge at the beginning of period t
Rt = R & D investment of the firm in period t

�� a� = depreciation rate for knowledge
b = technological capability or a measure of strength of knowledge
c� = a constant measuring the spill-over effect
w�t = random shock in period t.

The specification (1) of the technology of technological knowledge production
is general enough to incorporate various empirical findings on differential lagged
effects of R&D investments on stock of knowledge.

2.2 Valuation of technological Knowledge

Technological knowledge is an intangible, indivisible, inappropriable, i.e., difficult
to institute a property right, and involves externalities in production and its use.
Patent law is a legal protection assuring only a partial appropriation. There do not
exist markets for technological knowledge (Arrow [1962]). Following the strategy
of valuation of information in statistical decision theory, we impute an indirect
private value to a stock of technological knowledge in the following way.

The timing of innovation our firm is pursuing is not known, but the likelihood
of its taking place in any period is higher, the greater is the stock of accumulated
knowledge in the beginning of that period. Let P �z�t) be the probability that the
firm will reap the innovation in period t if its stock of knowledge is z �t, given that
it has not achieved it yet. Various forms for P ��� are plausible. One would like it
to satisfy the following: dP �z��dz � � and d�P �z��dz� � �. The reasonable
forms for P(.) are as follows:

P �z� � �� e��z � z � �� � � � (2)

and

P �z� �
�

�� �
���z � �z��� � � z � �� � � � � � (3)

The value of an innovation at t will depend in a number of ways on the firm size,
z�t, intensity of rivalry, z�t, and the market condition, or the profitability from the
current line of research, �t. Market concentration or intensity of rivalry is indeed an
industry level attribute. More rivals in an industry may entail a higher chance for
imitation of an innovated product or process and also a higher chance for another
firm’s innovation to arrive before the current innovation has reaped its maximum
monopoly rent. Moreover, more rivals may reduce the market share of a firm. All
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these lead to lower value for an innovation.2

The effect of firm size on the value of technological knowledge may come
through different channels. Following Nelson’s [1959] interpretation, I argue that
the larger firms, on the one hand, having already established name and reputation
in the market, can appropriate the benefit of an innovation by easy market pene-
tration, and on the other hand, having more product diversification, could use the
accumulated knowledge in more than one line of business. Therefore, the larger
firms may envisage a bigger return from a given stock of technological knowledge
than the smaller ones.3

Another important factor in the determination of value of technological knowl-
edge is completely unknown demand for new products in the case of product inno-
vation and shift in the demand in the case of process innovation. Higher are these
uncertainties, the lower will be the value of technological knowledge. This is some-
times referred as Schmookler’s hypothesis or demand pull or market opportunity
hypothesis.

Taking into account all the above factors in valuation of knowledge, let us
denote the value of the innovation by

��z�t� z�t� �t� (4)

For simplicity I am assuming here that (4) gives the present value at time t of the
stream of cash-flows that the innovation will bring, and it depends only on the
market condition prevailing at that time, but not on the future market conditions.
For instance, this will be the case if the innovation is patented and sold to another
firm for an amount of royalty payments, whose value is determined by the market
conditions prevailing then.4

If Rt is the R&D input used in period t, and if we assume that the cost of R&D
is quadratic in input use, one period expected reward from a stock of knowledge,
z�t, in period t is given by

v�z�t� � ��z�t� z�t� �t�P �z�t�� ����� P �z�t��� 	R�
t (5)

2Also greater monopoly power reduces the incentive for innovation as the firm with monopoly
power can continue to earn the monopoly rent without venturing into a new technological innovation.
It is generally argued that an intermediate level of market concentration is most conducive to rapid
technological innovation.

3It should, however, be noted that the smaller firms are not necessarily restricted to use their
knowledge only in their own production units as they can always sell it to another firm with licensing
arrangements.

4Kamien and Schwartz [1981], explicitly modeled rivalry using a subjective hazard function, and
then derived a functional relationship between rivalry and the present value of an innovation.
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plus a stock of technological knowledge, z�t�� as given by (1). If we further
assume that after reaping the targeted innovation, our firm will venture into another
innovation that will use the knowledge of the previous pursuit, then the firm faces
an infinite horizon for its R&D investment decisions. In that case, given the se-
quences, fz�tg, fz�tg, and f�tg, that characterize the environment facing our firm,
the expected value of a sequence of technological knowledge fz�tg obtained by
using fRtg is given by

V� � E�

�X
t��


t
�
��z�t� z�t� �t�P �z�t�� 	R�

t

�
(6)

where Et�x� denotes the conditional expectation of x given information set
�t. For our purpose, we will have the following linear specification of the reward
function.

��z�t� z�t� �t� � r� � r��t � r�z�t � r�z�t (7)

where, r�� r�� r� � � and r� � �. Substituting (3) in (7) and disregarding all terms
with powers greater than two, one gets

��z�t� z�t� �t� � P �z�t� � �r� � r��t � r�z�t � r�z�t� �
�

�� �
� z�t �

r��

�� �
� z��t

Regarding r� � r�� � �, we have from (5)

v�z�t� � Z
�

tQZt �HR�
t (8)

where, Q � �qij�i�j�������H � �	� q�� � �r��������� q�� � r�������� q�� �
r����� � �� q�� � ���� � �� other qij’s are zero, and Zt � �z�t� z�t� z�t� �t��.
I further assume that z�t, z�t, and �t follow a first5 order auto-regressive process,
given by

Z�t�� � a�Z�t � c� � w�t

Z�t�� � a�Z�t � c� � w�t

�t�� � a���t � c� � w�t

�������
������

(9)

where �w�t� w�t� w�t� is a three dimensional vector of white noise process. Writing
(1) (11) together, we have,

Zt�� � AZt � BRt � c� wt (10)

5In later section we will consider higher order auto-regressive processes.
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where

A �

�
BBB�

a� � � �
� a� � �
� � a� �
� � � a�

�
CCCA � B �

�
BBB�

b

�
�
�

�
CCCA � c �

�
BBB�

c�
c�
c�
c�

�
CCCA � wt �

�
BBB�

w�t

w�t

w�t

w�t

�
CCCA

We assume wt to be a 4-dimensional white noise process.

I am assuming here for simplicity that R&D activities affect neither the firm
size nor the intensity of rivalry. While this assumption is innocuous in the short-
run, 6 but for a medium to long-run analysis this may not be the case, see for
instance, Landes [1969] for historical evidence.

2.3 Firm’s problem

We assume that manager of our firm knows the parameters of his objective func-
tion, (6), and the parameters of the stochastic processes (10). At the beginning of
each period, t, he observes the realization of the variables in his information set,
�t. The variables in his information set include any stochastic process that Granger
causes either z�t, z�t, z�t, or �t. I assume for now that the manager of our firm can
observe z�t. We will relax this assumption in a later section. Given �t in period t,
he chooses a R&D investment Rt so as to maximize (6) subject to (10).

The corresponding Bellman’s equation for a slightly general case is as follows:

Vt�Zt� � max
Rt

�
Z

�

tQZt � q�Zt �R
�

tHRt � h�Rt � 
EtVt���AZt � BRt � c� wt�
�

(11)
In our particular case, q and h are zero vectors. Solution of (11) gives the optimal
Rt as a function of �t. We find solution in the next section.

3 Closed form solution to firm’s optimization problem

For now we assume that stock of knowledge is observable. We will relax this
assumption later. A stationary solution is a function, R t � ��Zt� for all t � �.
Following Bertsekas [1976], and Chow [1975,1981], we show that under certain
conditions7 on A, B, c, Q, and H, there exists an optimal stationary solution to (11)
as stated in the following proposition:

6However, see Levin [1981], and Levin and Reiss [1984] for studies of the simultaneity of R&D
expenditures and market concentration in a static framework.

7such as controllability and observability, see Bertesekas [1976] for details
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Proposition 1 The optimal stationary solution of (11) is given by

Rt � ��GZt � g� (12)

where
G � 
�H � 
B�KB���B�KA (13)

g � �H � 
B�KB���
	

B�Kc�




	
B�k �

h

	



(14)

K is a positive definite solution of the following matrix Riccati equation:

K � Q� 
A��K � 
KB�H � 
B�KB���B�K�A (15)

and k is the solution to the following vector Riccati equation:

k��I�
�A�BG�� � q��	g��H�
B�KB�G�	
c�K�A�BG��h�G�	
g�B�KA

(16)

Proof: We guess a solution for V of the form:

V �Z� � Z�KZ � k�Z � � (17)

where K is a positive definite matrix, k is vector of positive numbers and � is
a non-negative real number.

Substituting (17) in (11), we have

V �Zt� � maxRt
fZ�tQZt � q�Zt �R�tHRt � h�Rt

�
 �Z �tA
�KAZt � 	Z�tA

�KBRt � 	Z �tA
�Kc

�R�tB
�KBRt � 	R�tB

�Kc� c�Kc

�Et�w�tKwt�

�k�AZt � k�BRt � k�c� � �g

(18)

The first order condition yields equation (12). To find the solution for K, k, �,
we substitute the optimal value of Rt from (12) in (18) and the value of V �Z�
from (17) in the left hand side of (18) and then collecting terms for the quadratic
terms Z

�

tKZt, the linear terms k
�

Zt and the constant term, we get (15) and (16)
respectively.
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Q.E.D

Note that the vector Riccati equation (16) involves K, G and g, whereas the
matrix Riccati equationK does not involve k and g. To find the close form optimal
decision rule, (12), note that


B�KB �H � b�
k�� � 	

and
B�KA � �bk��a�� ���� bk��a��

Substituting these in (12), we have

Rt � �
b


b�
k�� � 	
�k��a�z�t � k��a�z�t � ���� k��a�z�t�� g (19)

We now compute k��, k��� ����k�� from the Riccati equation, (15):

K � A
�

h

K � ��KBB�K

�b�k����

i
A�Q

� A�DA �Q

�

�
BBBBB�

a��d�� a�d��a� ��� a�d��a�

��� ��� ��� ���

a�d��a� a�d��a� ��� a��d�

�
CCCCCA �Q

(20)

where,
D � �dij�i�j��������

� 
K � ��KBB�K

�b�k����

� 
K �K

�
BBB�

m � � �
� � � �
� � � �
� � � �

�
CCCAK

(21)

where, m � ��b�

�b�k����
. It is now easy to compute dij’s as follows:

d�� � 
k�� �mk��� �
	
k��

b�
k�� � 	
� after substituting the value of m
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d�� � 
k�� �mk��k�� �
	
k��

b�
k�� � 	
� after substituting the value of m

����

Substituting these in the right hand side of the last equality of (20) and then equat-
ing the matrix elements of both sides, we have

k��

�
��

a��	


b�
k�� � 	

�
� q��� i�e�� k����� a�� � q�� (22)

k��

	
��

a�a�	


b�
k�� � 	



� q��� i�e�� k����� a�� � q�� (23)

���

where,  � a���

b��k����
. Substituting these in (19) and simplifying the expression

(14) in a similar fashion, we have the following close form decision rule, (24)
which is stated as a proposition.

Proposition 2 A closed form solution to the firm’s problem is given by

Rt � �g � ��Z�t � ��Z�t � ��Z�t � ���t (24)

where,

g �
b

a�	��� �

�X
j��

cj��� aj�
��q�j

�i � �
b

a�	
ai��� ai�

��q�i� i � �� ���


 �
a�	


b�
k�� � 	

and k�� is a positive solution of the quadratic equation:

k��

�
��

	
a��
b�
k�� � 	

�
� q��

Equation (24) together with the system of equations for motion of the environ-
ment, (10), constitute the firm’s decision rule. The assumption of rational expecta-
tions and a particular specification of the stochastic processes, (10) have generated
cross equations parameter restrictions in the decision function of the firm. These
restrictions are generally used for identification of the structural parameters and
also for testing the rational expectations hypothesis assuming the model (10) is
correct or for testing the specification of the model (10) assuming the rational ex-
pectations hypothesis is correct. We will take up the identification issues in the
next section and estimation and testing issues in a later section.
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4 Identification of parameters: need for more lags

The structural parameters are � � �	� 
� q�j� j � �� 	� ���
�: from the objective
function; � � �

P
� b� a�i� ci� i � �� 	� ���
�: from the stochastic processes (10). We

will assume for now thatZ�t is observable. Therefore, the second set of coefficients
could be estimated from the system of equations (10). However, we will show that
not all of the first set of parameters could be identified, and hence they could not
be estimated from the observed data. To that end, note that from (24), we have

�X
j��

cj�j�aj � ��� �g (25)

k����� a�� � q�� (26)

 �
a�	


b�
k�� � 	
(27)

�� � �
b

��� a��	
q�� (28)

Note that from (25) we can get an estimate of . Substituting the value of q��
from (28) in (26) and then substituting the value of k�� in (27) we get

 �
a�


� � b�
���
(29)

From (29) we can get an estimate of 
. But since 	 cancelled out, we cannot
identify it in this system. Therefore, the system (10) - (24) is under identified.

4.1 Higher Order Lags and Identification Problem

We would investigate here whether specification of a higher order auto-regressive
process for (10) may ameliorate the under identification problem. We show that
the parameters could indeed be identified. While for any general auto-regressive
processes in (10), the closed form solution could easily be derived, for expositional
ease, we assume here a third order auto-regressive process for (10), namely

Z�t�� � a�Z�t � bRt � c� � w�t

Z�t�� � ���L�Z�t � c� � w�t

Z�t�� � ���L�Z�t � c� � w�t

�t�� � ���L��t � c� � w�t

������������
�����������

(30)
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where,
�i�L� � ai� � ai�L� ai�L

�� i � 	� �� 


and L is the lag operator, i.e., LXt � Xt��. Note that we still take the same form
for Z�t.

To derive the close form solution for the specification (30), we expand the state
space Zt to contain all the lag values of z’s and then extend the definition of A, Q,
B and c appropriately and proceed exactly the same way as we derived the solution
in proposition 3.2. We sketch our derivation for the special case, where we assume
that only z�t follows a third order autoregressive process, and assume that there
are only two other state variables, z�t and z�t both of which follow first order au-
toregressive process as in the previous model. The form of the close form solution
when all state variables except z�t follows third order autoregressive process will
be transparent from the derivation of this special case. In our sketch, we basically
note the differences with our earlier derivation. First of all, note that our new Zt,A,
B, and Q, C, and Wt are respectively

Zt �

�
BBBBB�

z�t
z�t
z�t��
z�t��
z�t

�
CCCCCAA �

�
BBBBB�

a� � � � �
� a�� a�� a�� �
� � � � �
� � � � �
� � � � a�

�
CCCCCA � B �

�
BBBBB�

b
�
�
�
�

�
CCCCCA

Q �

�
B� q�� q�� � � q��

�� �� �� �� ��
�� ��

�
CA � c �

�
BBBBB�

c�
c�
�
�
c�

�
CCCCCA � wt �

�
BBBBB�

w�t

w�t

�
�
w�t

�
CCCCCA

Directly from the formula of G in (13), we have

G �
�b


b�
 � 	
�a�k��� a��k�� � k��� a��k�� � k��� a��k��� a�k��� (31)

The above is parallel of equation (19). It is clear from the above that we need
to compute only the first row of the Riccati matrix K. To that end, proceeding
as in equations, (20) and ((21) of the previous model, we have the following five
equations corresponding to the first row of the matrix equality in (15)

k����� a�� � q�� (32)

k����� a���� k�� � q�� (33)
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k�� � a��k�� � k�� � � (34)

k�� � a��k�� � � (35)

k����� a�� � q�� (36)

Note that as expected the equations (32) and (36) are as in the previous model.
Equations (33)-(35) yield,

k�� �
q��

�������	
� k�� �

��a�����a���q��
�������	

� k�� �
�a��q��
�������	

(37)

Let us denote the the reduced form parameters corresponding to the z�t and its
lag values by

���L� � ��� � ���L� ���L
�

Substituting (37) in (31), we have

��� � �
bq��
a�	

�
����

�� ����
(38)

��� � �
bq��
a�	

�
a�� � a��
�� ����

(39)

��� � �
bq��
a�	

�
a��

�� ����
(40)

It is now clear how to derive these formulae for the general case. We state the
general result in the following proposition:

Proposition 3 A closed form solution of (11) and (30) is given by

Rt � �g � ��Z�t � ���L�Z�t � ���L�Z�t � ���L��t (41)

where

g �
b

a�	


� �

��
�b

a��	
�
�
��� 
�a� � b���

�
��
�
�c� � 
a�b

�� a�
q�� �

�X
j��

cjq�j
�� �j��

�
A

(42)

�j�L� � �
b

a�	
�
aj� � aj��� L� � aj��� � L� L��

�� aj�� aj�� � aj��
� q�j

� �
b

a�	
q�j

�X
i��

�
�j���i�

�
�

�� �j��
Li� j � 	� �� 


��� denotes the annihilation operator that tells us to ignore negative powers of L;
��� � k�� are as defined in (24) of proposition 3.2.
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Hansen and Sargent [1981] gave similar close form solution using Wiener -
Kolmogorov prediction formula. However, in our case (41) and (42) have been
derived directly from the matrix Riccati equation of the problem.

We now examine the identification of the structural parameters in (30)-(42).

Equations (38)-(40) imply

���
���

� 
���
�	�

�
a��
a��

(43)

From equation (43), we can estimate . It is now clear that given , we can
estimate 
 from (26)-(29). (Note that (26)-(29) are valid in this case also).

Also note that substituting in (42) the values of q �� from (28), q�� from (39)
and q�� and q�� from the equations that parallel (39), we can get an estimate of 	.
Now from (39) we get q��, and from equations parallel to (39) for Z�t and �t we
get q�� and q��. Finally, from (28) we get q��. So, all the structural parameters
could be recovered in this case. Note that we have never used parallel of (38) and
(40) from the other two variables, Z�t, �t in our identification strategy.

Therefore, the rational expectations hypothesis has imposed over identifying
restrictions across equations.

5 Granger causality and choice of variables in �t

So far implicitly we have been assuming that �t contains only Z�t, Z�t, Z�t, �t
and their lag values. In fact, we should include in �t all observable variables that
Granger cause either Z�t, Z�t, Z�t, or �t. In this section, we consider the nature of
the close form solution and the cross equations restrictions that will be generated
by the rational expectations hypothesis in such a case. For expositional ease, we
continue to assume third order auto-regressive processes for Z�t, Z�t and �t. Let
us assume that we have an extra stochastic process X�t which Granger causes Z�t

and which is related to Z�t process as follows

Z�t�� � a��L�Z�t � ���L�X�t

X�t�� � a���L�Z�t � ����L�X�t�t��

���
�� (44)

where
a��L� � a�� � a��L� a��L

�
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and
���L� � m�� �m��L�m��L

�

similarly a���L� and ����L� are defined.

Taking Z�t, Z�t, �t as before, and expanding the state space variable Zt to
accommodate Xt and its lag, appropriately modifying the matrices, A, B, C and
using the matrix Riccati equation we derive the close form solution as given in the
following proposition:

Rt � �g � ��Z�t � ���L�

�
Z�t

X�t

�
� ���L�Z�t � ���L��t (45)

where g, ��, ���L� and ���L� are as in (41), and ���L� is given by

���L� �
�
��� � ���L� ���L

� ���� � �
�

��L� �
�

��L
�
�

��� � �
b

a�	
�
a��� � a

�

������

���
q��

��� � �
b

a�	
�
a�� � a������

���
q��

��� � �
b

a�	
�
a�� � a������

���
q��

��� �
���

�� ����

��� � �� a��� a������

a��j’s are the same as ��j’s with a�j’s being replaced by m�j’s.

The identification of structural parameters in this case follows the same steps
as in the previous model. Notice that the above could be generalized for higher
order auto-regressive processes and for other z-variables easily.

6 Unobserved Technological Knowledge

So far we have assumed that Z�t is observable. We relax this assumption now. We
assume instead that we have a set of ”noisy - measurements”, Xt’s for Z�t. Denote
by �Z�t � E�Z�tjXt�. It is well known in the control theory that the same closed
form solutions hold if we replace Z�t by �Z�t in (24) (41) and (45). However, the
problem still remains how to evaluate E�Z�tjXt�.
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Two approaches could be followed to estimateE�Z�tjXt�. One approach, used
in the optimal control literature, is based on the Kalman-filtering formula (see
Chow [1981] for an exposition of Kalman filtering). While this is an appropri-
ate approach, it assumes that initial stock of knowledge is known, which is rather a
strong assumption if we use panel data of firms. Even when we could obtain some
noisy estimate of the initial stock of technological knowledge, Kalman filtering al-
gorithm when combined with an algorithm of maximum likelihood estimation of
the structural parameters become highly non-linear and may not converge in most
cases.

An alternative approach followed by Griliches [1979] and Pakes and Griliches
[1984] is to take changes in stock of knowledge at t as weighted sum of past five
years’ R & D investments and then relate it to the number of patents applied for
by the firm in any period. Although, their purpose was not the estimation of stock
of knowledge, their method could be adopted to generate an empirical measure
of knowledge up to a scale factor. Actually, from their productivity analysis, one
could get a direct estimate of the weights for different lags of R&D expenditures
and hence a measure of knowledge with measurement errors (see Griliches [1979]).
Following this line of research, we postulate that

Z�t � 

�

Xt � ut (46)

where 
 is a vector of regression coefficients and Xt include past R & D expendi-
tures, and other technological variables such as royalty and technical fee payments
to the domestic and abroad, number of scientific and engineering personnels, etc.,
and ut � iid��� ���. Z�t is not observed, what we observe is Pt the total number
of patents our firm has applied for up to period t. We further assume that

Pt � k if and only if �k � Z�t � �k � �� (47)

where k � �� �� 	� ���m (a large positive number), �� � �� �j � �j��, j �
�� 	� ���m, and �m�� ��.

If F is the distribution of u, then from (46) and (47), one gets

Probf Pt � m g � F ��m�� � 

�

Xt�� F ��m � 

�

Xt� (48)

These models are known as ordered qualitative response models (see Amemiya
[1985] and Maddala [1983] for more about these models).

We can use Logit or Probit specification to estimate (48), however, 
 in (48)
could be estimated only up to a scale factor, namely we can estimate only 
��.
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7 Estimation and testing of the model

We illustrate estimation and testing problems for the rational expectations model
giving rise to the system (30) and (41). It should be noted that by adding X-
processes to the system (30) would not change the nature of the econometric prob-
lems, so we omit those for our expositional ease. (41) is not yet a regression equa-
tion as it does not involve an error term. We generate an error term in (41) as
follows:

We view that �t is a random process which is observed by the producer but not
by the econometrician. Let us further assume that c� � � and that �t follows a first
order auto-regressive process, i.e., ���L� � a�. So, the disturbance term in (41) is

et � �
b

a�	
��� a��

�� a���t

� �
b

a�	
�q�� ��� a��

�� ��� a�L�
�� w�t

i.e.,

��� a�L�et � �
b

a�	
�q����� a��w�t (49)

It is clear that the error term in (41) follows a first order auto-regressive process. For
higher order auto-regressive processes, ���L�, it is straightforward to derive expres-
sions similar to (49). Treating estimatedZ�t as observed technological knowledge,
one can now use the method of maximum likelihood to estimate all the parameters.

Assuming that the model (30) is true for the Zt- processes, the cross equation
parameter restrictions could be used to test the hypothesis of rational expectations.
Let L� be the likelihood of the sample of observations on Rt’s when �’s and g

are unrestricted in (41). This involves estimating 9 parameters. Let L� be the
likelihood of the sample onRt’s when �’s and g are estimated as function of � after
plugging in the values of � in (41). There are now 6 parameters to be estimated.
Note that the Neyman - Pearson’s likelihood ratio test criterion

�	�logL� � logL�� � ��
��

9-6 = number of restrictions under the hypothesis that the cross equation parameter
restrictions are true.

In fact, the same test could also be used for testing the specifications of the
model (30), under the assumption that the rational expectations hypothesis is true.
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