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Abstract 

 
This paper investigates the evolution of health over the life-cycle using the Panel Study of Income 
Dynamics. We allow for two sources of persistence: unobserved heterogeneity and state dependence. The 
former is modeled by discrete “types.” Estimation indicates that there are at least four types suggesting that 
there is a large degree of heterogeneity governing health dynamics. We find that the degree of state 
dependence is near unity for over half of the population. The implications of these findings are twofold. 
First, health inequalities in adulthood have antecedents in childhood. Second, policies that improve 
health care and its delivery may be an effective means of mitigating the gradient. 
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1 Introduction

This paper explores the notion that an individual’s health follows a persistent stochastic process.

We concern ourselves with two tasks. The first is to gain a better understanding of the appro-

priate way of modeling the evolution of health over the life-course. This is important because,

while many empirical studies have investigated the dynamics of both the level of earnings (Lillard

and Willis 1978; Abowd and Card 1989) and, more recently, the variance of earnings (Meghir

and Pistaferri 2004), few have investigated the dynamics of health.1 It has been noted by

many researchers such as Deaton (1992) and Caballero (1990) that different assumptions about

the stochastic process governing income can imply very different types of life-cycle consumption

behavior. Accordingly, as health status becomes a more common state variable in structural

models, it is becoming increasingly more important that researchers arrive at a better under-

standing of its dynamics.2 The second task of this paper is to quantify the relative contributions

of unobserved heterogeneity and state dependence in the determination of health. Doing so is

important as this will have implications for the effectiveness of health policy.

To analyze health dynamics, we utilize data on Self-Reported Health Status (SRHS) from

the Panel Study of Income Dynamics (PSID). We observe that SRHS is highly persistent in

the PSID. Indeed, in our data, the first order auto-correlation of a dummy variable indicating

1Contoyannis, Jones and Rice (2004) and Contoyannis, Jones and Leon-Gonzalez (2004) are notable exceptions.
2For examples of structural model using health as a state variable, see Rust and Phelan (1997), French (2005)

and Arcidiacono, Heig and Sloan (2007).
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that an individual reports fair or poor health is 0.5661 and 0.5643 for men and women, respec-

tively. However, while these correlations do indicate a high degree of persistence, they are not

informative of the underlying stochastic properties of the health process.

To gain additional insight, we model the evolution of health over the life-cycle as a first order

Markov process. The model allows for two sources of persistence. The first source is unobserved

heterogeneity which models an individual’s (unobserved) ability to cope with idiosyncratic health

shocks such as accidents or exposure to disease-causing agents. We allow all of the parameters

of our linear index to vary across individuals. Our model incorporates heterogeneity by allowing

for a distribution of unobserved discrete “types.” The second source of persistence in the model

is state dependence which models the degree to which an individual’s ability to cope with a

given health shock depends on her health status. State dependence in health captures the idea

that people who are ill are less able to cope with health shocks than people who are well. We

model state dependence in a flexible manner by allowing for heterogeneity in the coefficient on

lagged health. This approach contrasts with much of the applied literature on dynamic panel

data models which, typically, only allows for heterogeneity in the constant term and, thus only

models state dependence as a homogeneous function of the lagged state.3

Estimation yields many interesting findings. First, we find that the number of types in our

data is at least four indicating that unobserved heterogeneity is an important factor governing

the evolution of health. This suggests that much of what determines health in adulthood can be

traced back to childhood. Similar results using a more straightforward approach can be found

in Case, Paxson and Lubotsky (2002). Second, we find a very large degree of state dependence

3For example, see Magnac (2000), Chay, Hoynes and Hyslop (1999), Contoyannis, Jones and Rice (2004) and
Hyslop (1999).
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for over half of our population. In fact, it is close to unity! Taken at face value, this suggests

that medical interventions and attempts to expand access to health care are likely to have large

effects on population health. Moreover, to the extent that a large portion of the ubiquitous

correlation between health and wealth or the gradient is determined by the causal effect of

health on income, as has been asserted by Smith (1999), the large degree of state dependence

that we uncover strengthens the case for health policies as a means of mitigating the gradient.

However, while we certainly do view this as a provocative result, we advise the reader to interpret

this finding with caution for technical reasons which we discuss in the body of the paper.

The balance of this paper is organized as follows. Section 2 describes the data. Section 3

sets up our model of health dynamics. Section 4 describes our estimation procedure. Section

5 discusses our findings. In Section 6, we discuss the relevance of our findings for health policy.

Section 7 concludes.

2 Data

We use data from the PSID spanning the years 1984 to 1997. The variables that we employ

are SRHS, age and gender. The SRHS question was only asked of heads of household and their

spouses and, thus, our sample is restricted to these individuals. We do not employ data prior

to 1984 as the SRHS question was not asked in these years. The PSID contains an over-sample

of low-income families called the Survey of Economic Opportunity (SEO). Because the sample

was chosen based on income, we follow Lillard and Willis (1978) and drop it due to endogenous
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selection.4

SRHS is a categorical variable that takes on integer values between 1 and 5. 1 means that

the individual perceives that their health is excellent; 2 is very good; 3 is good; 4 is fair; 5 is poor.

While these data are subjective measures, there is an extensive literature that has shown a strong

link between SRHS and more objective health outcomes such as mortality and the prevalence of

disease (Mossey and Shapiro 1982; Kaplan and Camacho 1983; Idler and Kasl 1995; Smith 2004).

It should also be mentioned that many supposedly objective health measures are not without

their limitations. For example, self-reports of specific morbidities such as diabetes or cancer

are often inaccurate since many people are unaware that they even have these conditions due

to low consumption of medical services. In addition, these measures typically do not account

for the severity of the condition. To lower the number of parameters that we estimate, we map

all self-reports of fair or poor health into unity and all other reports into zero. This is the

conventional way of partitioning the SRHS variable in the health economics, public health and

epidemiology literatures.

We restrict our sample to individuals between ages 22 and 60. We do not include people

younger than age 22 because there are not that many household heads younger than this age.

We do not include people older than age 60 to mitigate any possible bias resulting from attrition

due to mortality. We drop individuals whose age declines across successive survey years. We

also drop individuals whose age increases by more than two years across successive survey years.

Finally, we restrict our sample to white men and women. Table 1 reports the descriptive statistics

4Meghir and Pistaferri (2004) include the SEO in their work. Their reason for its inclusion is that by estimating
linear models in differences, the unobserved heterogeneity is purged from the regression equation and, consequently
the initial condition problem posed by the endogenous selection of the SEO is solved. However, this will not
work in our case as we work with a non-linear model in which it is impossible to purge the model of any fixed
effects.
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from the resulting sample.

3 The Empirical Model

We let hi,t ∈ {0, 1} denote the health of individual i at age t. Throughout this paper, we refer

to individuals for whom hi,t = 1 as “ill” and individuals for whom hi,t = 0 as “well.” We assume

that health evolves according to the following process:

hi,t = 1(αi + γihi,t−1 + ρiT+ εi,t ≥ 0) (1)

where T = [t, t2]0. The model allows for four determinants of health: idiosyncratic risk, aging,

state dependence and heterogeneity.

Idiosyncratic risk is represented by εi,t and models illness-causing agents or events that affect

individual i when he is of age t. Throughout this paper, we will refer to εi,t as a “health shock.”

Examples of these shocks are accident occurrence, disease onset or exposure to bacteria and

viruses. Because the effects of these agents can vary considerably in their intensity, εi,t can

assume a continuum of values. We assume that εi,t is independent of (αi, γi,ρ
0
i,hi,0) and that it

is distributed i.i.d. across time with a logistic distribution.5 These assumptions imply that

P (hi,t = 1|hi,t−1, ..., hi,0, θi) =
exp(θ0iZi,t−1)

1 + exp(θ0iZi,t−1)
(2)

5Attempts have been made by Hyslop (1999) and Contoyannis, Jones and Rice (2004) to relax the i.i.d.
assumption by allowing for serial correlation in εi,t. However, both attempts resulted in negative estimates of
the serial correlation in εi,t. Both papers conclude that this finding is odd and probably reflects an identification
issue in these more complicated models.
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where θi ≡ (αi, γi,ρ
0
i)
0 and Zi,t−1 = (1, hi,t−1,T

0)0.

The coefficients in ρ0i are our aging coefficients. They allow the effects of health shocks to

increase with age. In addition, they account for the fact that many diseases like Alzheimer’s,

cancer, hypertension and heart disease are more likely to manifest later in life. Within the

context of the Grossman model of health investment (Grossman 1972), these coefficients can be

interpreted as the rate at which the health capital stock depreciates.

The coefficient γi is our state dependence coefficient. It models the notion that a person

who is ill may be less able to cope with a given health shock than when that same person is well.

To give a concrete (albeit extreme) example, exposure to a flu virus is more likely to affect a

person’s health if she is HIV positive than if she is HIV negative.6

Our model allows for a large degree of flexibility in heterogeneity. We do this by letting the

vector, θi, vary across individuals. So, not only is there heterogeneity in the “constant” term,

αi, but there is also heterogeneity in all of the model’s parameters. This contrasts with the

majority of the dynamic panel data literature in which, typically, only αi is individual-specific.

Unobserved heterogeneity models an individual’s ability to resist health shocks.7

While our motivation of the model is rooted in epidemiology, two important ties to the

economics literature can be made. The first is that many recent investigations into life-cycle

6It is important to contrast our model with an obvious alternative formulation in which health is determined
by a continuous index given by Hi,t which follows an AR(1) process and hi,t = 1 (Hi,t ≥ 0). While this alternative
does allow health shocks to have persistent effects, it does not allow for state dependence. In other words, in
this model, the effects of a shock on future health outcomes are not conditioned by the agent’s health status.

7Note that we can write part of the index in equation (1) as

αi + γihi,t−1 = κi,0(1− hi,t−1) + κi,1hi,t−1

where γi ≡ κi,1−κi,0 and αi ≡ κi,0. What this calculation tells us is that, as long as we expect to see heterogeneity
in both the persistence of illness, or the transition from hi,t−1 = 1 to hi,t = 1, and in the onset of illness, or the
transition from hi,t−1 = 0 to hi,t = 1, then we should expect heterogeneity in both the constant coefficient (αi)
and the state dependence coefficient (γi).
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consumer behavior such as Arcidiacono, Sieg and Sloan (2004), French (2005) and Rust and

Phelan (1997), have incorporated exogenous uncertainty over health states. Our empirical

investigation will provide additional insights into how this uncertainty should be modeled. The

second is that our empirical model can be interpreted as a reduced form version of a model

of health investment. For example, a simple model in which health is modeled by discrete

states and the costs of health investment are state dependent will imply that health will follow

a persistent process. One interpretation of equation (1) is that it is a reduced form version of

this process.

Finally, it is important to emphasize the ties between the identification of state dependence

in health and in labor market outcomes. As pointed out by Hyslop (1999), many sources of state

dependence in labor force participation have been cited including intertemporally nonseparable

preferences for leisure (Hotz, Kydland and Sedlacek 1988) and search costs which depend on

participation states (Eckstein and Wolpin 1990). However, it is important to recognize that,

regardless of the underlying source, understanding the magnitude of state dependence in labor

force participation will have policy implications since it tells us about the effectiveness of policies

that alleviate short-term unemployment. Similarly, the magnitude of state dependence in health

will be informative of the relative importance of unobserved individual characteristics vis-a-vis

idiosyncratic health shocks. To the extent that the effects of these shocks can be mitigated by

improvements in health care and its delivery, understanding the magnitude of state dependence

in health will have implications for many health policy debates. In both the cases of labor and

health economics, the statistical properties of the data will contain information that is pertinent

for the conduct of policy.
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4 MLE

We estimate the model in equation (1) using an MLE procedure which has been discussed in

Heckman (1981a and 1981b). Individual i ( i = 1, ..., N) experiences hi,t at time t ∈ {0, ..., Ti}.

However, the econometrician only observes hi,t for t ∈ {τ i, ..., Ti} where τ i ≥ 0, and, thus, we

have an initial conditions problem. The procedure that we use accounts for this.

We now construct the likelihood function. The likelihood of a sequence of health outcomes

conditional on (θ0i, hi,τ i) for individual i for t = τ i, ..., Ti is given by

P (hi,Ti , ..., hi,τ i+1|hi,τ i ,θ0i) =
TiY

t=τ i+1

Λ (θ0iZi,t−1(2hi,t − 1)) . (3)

We assume that the heterogeneity vector has a discrete support where it can take on one of

A values so that θi ∈ {θ1, ..., θA}. The probability weight that is associated with each point

of support is πa. This approach is similar to Heckman and Singer (1984) who use a discrete

distribution to approximate the distribution of unobserved heterogeneity when estimating du-

ration models in the presence of heterogeneity via nonparametric maximum likelihood.8 Let

Pτ i(hi,τ i|θ0a) denote the probability of the first observation conditional on θi = θa. We can now

8Heckman and Singer (1984) verify that Kiefer-Wolfowitz conditions are satisfied for a general class of duration
models with unobserved heterogeneity. These conditions ensure consistent estimation of the distribution of
unobserved heterogeneity and structural parameters in this class of duration models. In addition, they cite a
theorem from Lindsay (1983) that says that the nonparametric maximum likelihood estimate of the structural
parameters and distribution of the unobserved heterogeneity will be such that the estimate of the heterogeneity
distribution is discrete. Our approach contrasts with Heckman and Singer since we assume that the population
distribution of the heterogeneity is discrete and, hence, we do not need to verify the Kiefer-Wolfowitz conditions.
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obtain the unconditional likelihood of observing (hi,τ i , ..., hi,Ti) via

P (hi,Ti , ..., hi,τ i) =

AX
a=1

P (hi,Ti , ..., hi,τ i|θ0a)πa = (4)

AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa.

Summing over the heterogeneity addresses the incidental parameters problem (Neyman and Scott

1948).

Our model implies a recursive definition for Pτ i(hi,τ i|θ0a). To compute this probability, first,

we let the probability of being well in t = 0 conditional on θa be given by pa ≡ P0(hi,0 = 0|θ0a).

The probability of observing hi,t conditional on θa in any subsequent period is then given by

Pt(hi,t|θ0a) =
1X

d=0

Pt(hi,t|hi,t−1 = d,θ0a)Pt−1(hi,t−1 = d|θ0a) (5)

=
1X

d=0

Λ((θ0aZi,t−1)(2hi,t − 1))Pt−1(hi,t−1 = d|θ0a).

Substituting, we get

Pt(hi,t|θ0a) =
1X

d=0

Λ((θ0aZi,t−1)(2hi,t − 1))

1X
d=0

Λ((θ0aZi,t−2)(2hi,t−1 − 1))... (6)

1X
d=0

Λ((θ0aZi,0)(2hi,1 − 1)) ∗ (pa)1−d (1− pa)
d.
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Using the above recursive formulation, we can calculate Pτ i(hi,τ i|θ0a).9 Of course, this is a bur-

densome task if τ i is large since computation will involve calculating the sum of the probabilities

of all possible sequences of health outcomes that could have led to hi,τ i. Fortunately, the above

recursive definition simplifies matters greatly.

Our treatment of the initial condition in (6) imposes no additional parametric assumptions

on the model beyond the assumptions that health evolves according to equation (1) and that the

heterogeneity distribution is discrete. The reason is that because equation (1) contains no time

varying regressors, we can roll the model back to t = 0. In addition, because the heterogeneity

has a discrete distribution, we can treat the probabilities pa as additional parameters in the

model to be estimated. In other words, because of these two assumptions, we do not need to

make an additional parametric assumption about P0(hi,0 = 0|θ0a).

Using these probabilities, taking logs and summing over individuals, we obtain the likelihood

function:

L(β) = (7)

NX
i=1

log

Ã
AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa

!
.

9Heckman (1981a) proposes using this method which involves using the underlying statistical model to calcu-
late Pτ i(hi,τ i |θ0a) which can in turn be used to calculate P (hi,Ti , ..., hi,τ i). This procedure addresses the initial
condition problem that occurs when the stochastic process has been running prior to τ i. Since our underly-
ing statistical model does not have any time varying regressors, we do not need to concern ourselves with the
distribution of the time varying regressors for t < τ i. However, in the presence of time varying regressors,
auxiliary distributional assumptions must be made. In addition, the computations become rather involved. An
alternative to this is provided by Wooldridge (2005) who proposes modeling the distribution of the heterogeneity
conditional on hi,τi and any time varying regressors that may be present. Doing this does not require internal
consistency with the underlying statistical model nor does it require computations that are as involved as the
previous method, but it does require additional distributional assumptions. A third solution to the initial condi-
tions problem assumes that the process has been running sufficiently long prior to the sampling period and that
the process is in equilibrium. It then uses the stationary distribution for the process as the probability of the
first observation. However, this will not work in our case as health is non-stationary process.
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where β ≡ (θ01, ...,θ0A, π1, ..., πA−1, p1, ..., pA). β is of dimension 7A− 1. L(β) was maximized

using the Fletcher-Powell algorithm, a variant of Newton’s Method, which only requires the

computation of the the gradient vector ∇L(β).10 Since evaluating the likelihood in (7) can be

time-consuming, we calculated analytical gradients, as opposed to numerical gradients.11

Often times, when the number of support points for the mixing distribution exceeds two,

attempts to estimate the probabilities πa directly will result in trivial probabilities for some

support points so that the number of support points effectively collapses to two or (sometimes)

three. To avoid this complication, we follow Arcidiacono and Jones (2003) and note that the

MLE of πa is given by

bπa = 1

N

NX
i=1

fi,a
qi

(8)

where fi,a ≡
TiQ

t=τ i+1

Λ(θ0aZi,t−1(2hi,t−1))Pτ i(hi,τ i|θ0a)πa and qi ≡
AP
a=1

fi,a. This insight suggests the

following iterative strategy. First, choose a set of values for the mixing distribution probabilities

and call these values π1a. Similarly, choose initial values for ≡ (θ01, ...,θ0A, p1, ..., pA) and call

these values 1. Next, calculate the gradient with respect to using the probabilities π1a and

1 and iterate to get 2. Then, evaluate equation (8) using π1a and
1 to obtain π2a. Repeat the

process. To verify that this procedure does in fact work, using two support points, we calculated

the MLE using this method and using the alternative method in which the probabilities πa were

estimated directly (i.e. we differentiated the likelihood function with respect to πa as well).

Both procedures yielded the same estimates.

10Typically, when the distribution of unobserved heterogeneity is treated in the spirit of Heckman-Singer, the
EM algorithm is used for optimization. However, Newton’s method has also been used (see Baker and Melino
2000, for example).
11All computer programs and data used are available upon request from the author.
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5 Estimation Results

5.1 Model Selection

We investigate model selection along two dimensions. The first is the specification of the index

inside equation (1) and the second is the number of support points.12 To accomplish this, we

employ the Akaike Selection Criterion (AIC) which is given by

AIC = − 2
N
logL

³bβ´+ 2p
N
∝ − logL

³bβ´+ p

where p = dim (β) (Amemiya 1985). When comparing models, the preferred model has the

lowest AIC.

5.1.1 Index

We consider three indices. The first is ρa = [ρ
1, 0] for all a. We call this model the linear model.

The second is ρa = [ρ1, ρ2] for all a. We this the homogeneous quadratic model. The third

model is unrestricted so that we have that ρa = [ρ
1
a, ρ

2
a]. We call this model the heterogeneous

quadratic model. In all three models, we allow for heterogeneity in both αa and γa.

The results of this exercise are reported in Table 2 for A = 2 and A = 3. When we only have

two points of support, we see that the AIC slightly favors the homogeneous quadratic model for

both men and women. When we move to three points, the AIC still favors the homogeneous

12When testing for the number of support points, likelihood-based test statistics are inappropriate because
under the null hypothesis one of the probabilities πa must be set to zero. This places the parameter vector at
the edge of a compact set and, thus, violates the regularity conditions of MLE. Consequently, the resulting test
statistic will not be χ2. However, because model selection criteria do not require that the true parameter lie in
the interior of a compact set, they are appropriate. For a formal derivation of this, we refer the reader to Leroux
(1992).
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quadratic model for men, but now favors the heterogeneous quadratic model for women. What

is important to note, however, is that our choice of index does not alter the AIC too much.

5.1.2 Support Points

Table 3 reports the AIC results for the number of support points. We consider up to four points

of support. We did not venture beyond four points due to computational limitations. For each

value of A that we considered, we estimated the model with the homogeneous quadratic function

of age.13

What we see is that, for both men and women, the AIC increases with the number of support

points, but at a decreasing rate. In contrast to altering the index, adding support points has a

dramatic effect on the AIC. The preferred model has four points of support suggesting that there

is a tremendous amount of heterogeneity in health dynamics. Presumably, if we had continued

to add support points, we would have found evidence of even more heterogeneity. However,

because the relationship between the AIC and A appears to be concave, we conjecture that

eventually the selection criterion would have started to decline. The results of this table stand

in contrast to results in Deb and Trivedi (1997) who find that only two points of support were

necessary when estimating a model for the demand of medical care.

5.2 Health Dynamics

13When choosing the number of support points we did not concern ourselves with the index selection for two
reasons. The first is that, as indicated by Table 2, changing the index did not alter the AIC tremendously. The
second is that the computations in this exercise were quite intensive. Utilizing more complicated indices, such
as the heterogeneous quadratic model, would only have made it worse.
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Tables 4 and 5 report the parameter estimates and their standard errors for the homogeneous

quadratic model with four support points for men and women.14 This model had the lowest

AIC of all the models that we considered. Each column of the tables corresponds to a separate

support point which we call a “type.” We have defined each according to the magnitude of αa.

The lowest value (i.e. most negative) of αa is defined to be “Type 1” and the highest is “Type

4.”15

There are several salient features of these tables. The first is that type 1 men and women

appear to have a tremendous degree of state dependence since the estimates of α1 are very low

and the estimates of γ1 are very high. The second is that many of the standard errors are quite

large. We presume that this is a consequence of the large number of support points that we have.

The third is that the probabilities associated with the support points, πa, are all reasonably large

so that there appear to be non-trivial numbers of each type.

In Figures 1 through 4, we take the parameter estimates for men in Table 4 and map them

into health transition probabilities.16 Each figure corresponds to a separate type and plots two

profiles. The first is the probability of being ill today conditional on having been ill yesterday.

We call this profile the persistence of illness. The second is the probability of being ill today

conditional on having been well yesterday. We call this profile the onset of illness. Each profile

14Standard errors were calculated using the “sandwich” standard errors. The gradient vector from the likelihood
function was used to calculated the average of its outer product. To calculate the Hessian, we numerically
differentiated the gradient vector.
15The high estimate of p4, or the probability of being well at age 22 for type 4 men, in Table 4 is a bit of a

curiosity. In Table 5, we see that the estimates of pa are declining with the type. In Table 4, the probabilities
decline only until type 3. We believe that the reason for this anomaly is that these probabilities can be difficult
to pin down. Moreover, the facts that we have fewer men than women in our sample, men have lower morbidity
and the probability of being type 4 is somewhat low suggest that the probability, p4, might be hard to estimate
for men.
16The figures for women were similar and, so we do not report them.
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displays health dynamics for ages 23 to 60. We plot 95% confidence bands around each profile.17

It is important to realize that because many of the standard errors in Tables 4 and 5 are quite

large, some of these confidence bands include zero or unity.

The figures show a large degree of heterogeneity in health dynamics. Figure 1, which corre-

sponds to Type 1 men, shows that the persistence of illness is close to unity and that the onset

of illness is close to zero at all ages. This suggests that Type 1 men exhibit a tremendous degree

of state dependence. Figures 2 through 4 correspond to Types 2 through 4 and provide what

we believe to be more reasonable estimates. Type 2 men are the healthiest and Type 4 men are

the unhealthiest. These figures show more far more muted degrees of state dependence than

Figure 1.

Figures 5 through 12 display the degree of state dependence, which is defined to be the differ-

ence between the persistence and onset profiles, for men and women. Each figure corresponds to

a separate type. Figures 5 through 8 correspond to men and the remaining figures correspond

to women. Each figure includes a 95% confidence band which as before might include either

zero or unity due to the high standard errors of our parameter estimates. The degree of state

dependence is close to unity for Type 1 men and women. It is important to note that over 50%

of men and women are estimated to be Type 1. If we take this result literally then it suggests

that medical interventions that keep people healthy are likely to be extremely effective. The

degree of state dependence for Type 2 men and women is very low - below 10% for most ages.

For Types 3 and 4, we see a more intermediate degree of state dependence that is somewhere

between 10% and 20%.

17The δ-method was used to calculate the standard errors.
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At this point, we must subject the reader to the caveat that we believe that the high degree

of state dependence that we uncovered for Type 1 people is somewhat suspicious. We conjecture

that this may reflect an undesirable property of working with mixing distributions with large

number of support points. We cite two reasons for our suspicions. First, Halliday (2007)

using the same data, but alternative semi-parametric tests, did not find strong evidence of state

dependence. However, it is important to be aware that this finding may be a consequence of

the low power of his test statistic. Second, Baker and Melino (2000) investigated the properties

of duration models with unobserved heterogeneity and showed that certain pathologies arose as

the number of support points increased. We believe that it is reasonable to expect that similar

pathologies might exist in our context as well. As a testament to this, in an earlier draft of this

paper where we only allowed for two support points, we found a far more muted degree of state

dependence.

6 Discussion

Can the estimates in this paper inform us about health policy and if so, what do they tell us?

The answer to this question, to a large degree, depends on how good our health measures are

and how well our modelling decisions and estimation procedures capture individual level health

dynamics. While many criticisms can be made, including that our approach is too “reduced

form” in that it does not model individual decisions, we do believe that some lessons can be

learned from our results. In addition, we would like to re-emphasize a point made earlier that

our approach, which is focused on deepening our understanding of the statistical properties of our

data while make parametric restrictions that are as weak as possible, can be informative of policy.
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In fact, because measuring health is so difficult and incorporating it into life-cycle consumption

models often results in models that are very hard to estimate and potentially fragile in the face

of mis-specified distributional and modeling assumptions, many authors such as Adams, Hurd,

McFadden, Merrill and Ribeiro (2003), Adda, Banks and Van Gaudecker (2006) and Halliday

(2007) have also adopted less structural approaches in health applications.

So, what can we learn? If we can take our estimates literally, we can make the following

conclusions. First, the high degree of state dependence that we find for Type 1 men and women

suggests that there is ample room for improvements in health care and its delivery to reduce

morbidity in society. This is especially true given that Type 1 people constitute over 50% of

the population. Second, the relatively low degrees of state dependence that we find for Types

2, 3 and 4 suggest that policies that target these adults will be substantially less effective than

for the Type 1 people.

Of course, the types are unobserved to the policy makers and, thus, it is difficult to know

precisely who should be targeted. This can be circumvented, to some extent, if we extend the

estimation procedure to allow the probability of being a certain type to depend on additional

observed characteristics. We leave this task for future work. However, it should also be

mentioned that the fact that the types are unobserved is not necessarily problematic. The

reason is that we have predicted a large degree of state dependence for roughly half of the

population. Moreover, while the other half has more muted degrees of state dependence, it is

still positive and, typically, statistically different from zero. Accordingly, our results suggest that

even if a policy targets the entire population, it is still likely to have large effects on population

health.

18



7 Conclusions

This paper investigated the evolution of health over the life-course by estimating several spec-

ifications of a flexible model of health dynamics which allowed for two sources of persistence:

unobserved heterogeneity and state dependence. Our analysis suggested that altering the linear

index of our model did little to improve its fit. In contrast, however, adding support point to the

mixing distribution improved the model’s fit tremendously. We found that at least four support

points were necessary indicating that there is a large degree of heterogeneity in our data. This

suggests that much of what determines health in adulthood can be traced back to childhood and

is consistent with recent work by Case, Paxson and Lubotsky (2002). In addition, we found

that for over half of the population the degree of state dependence was close to unity. However,

we are cautious to warn readers that we find this result to be somewhat suspicious. Further

research on this topic using alternative methods, health measures and data sets is necessary to

investigate the robustness of this result.

The results of this paper shed light on the gradient: the much-studied but little-understood

statistical correlation between health and socioeconomic status (Adams, et al 2003; Adler, et

al 1994). If it is the case that the gradient is largely determined by the causal impact of

health status on earnings and wealth - as suggested by Smith (1999) - then the relevant policy

prescription is to directly target health via improvements in health care and its delivery (Deaton

2002). The argument for health policies is further strengthened if health exhibits a high degree of

state dependence as this implies that interventions will have large dynamic effects which operate

through the causal effect of health on itself. If we take the results of this paper at face value,

they strengthen the case for targeting health as a means of mitigating the gradient.
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This paper suggests several further research topics. First, additional work should be done

to incorporate mortality into the existing framework, while addressing the selection bias that

it induces. As discussed by Wooldridge (2000), correcting selection bias due to non-random

attrition - which encompasses mortality - is difficult, particularly, when the econometrician is

unwilling to make stringent assumptions. The reason is that while the sample may be random

in the initial time period, the sample is, generally, non-random for every subsequent period.

Consequently, we expect any estimates of a transition probability in these subsequent periods to

suffer from selection bias even if mortality were to be added as a third (absorbing) state.

Second, further work should estimate models with higher orders of state dependence. The

main challenge here concerns the initial condition. When the model only contains first order

state dependence, only two initial condition probabilities need to be estimated for each support

point (i.e. that pa’s in the model). However, with second order state dependence then four

of these probabilities must be estimated for each support point. Generally, in the case of Kth

order state dependence, we will need to estimate A ∗K2 probabilities.

Finally, additional work should estimate structural models that incorporate health as a state

variable. While there have been some studies that have done so such as Rust and Phelan

(1997), French (2003) and Arcidiacono, Heig and Sloan (2007), this is still a relatively new field.

Particular attention should be paid to how assumptions about the health process affect estimation

results. While many researchers working on consumption have strived to better understand how

assumptions on the underlying income process affect identification, similar work has not been

done in life-cycle models with health uncertainty.
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Table 1: Descriptive Statistics
Women

Mean 25% Quantile 75% Quantile Standard Deviation
SRHS (5-Point) 2.22 1 3 0.99
SRHS (2-Point) 0.10 0 0 0.30
Age 39.10 31 46 9.82
Panel Duration∗ 8.21 4 14 4.45
N = 4186∗∗

Men
SRHS (5-Point) 2.10 1 3 0.98
SRHS (2-Point) 0.08 0 0 0.27
Age 39.34 32 46 9.56
Panel Duration∗ 8.44 4 14 4.46
N = 3923∗∗

∗Panel duration refers to the length of time that the individual was in the panel.
∗∗N is the number of individual observations, not individual-time observations.
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Table 2: AIC for Index Selection
A = 2 A = 3

Men Women Men Women
Linear Model 6163.8 7564.5 6084.9 7453.9
Homogeneous Quadratic Model 6163.1 7563.2 6083.5 7452.9
Heterogeneous Quadratic Model 6163.9 7564.7 6085.6 7450.9

Table 3: AIC for Selection of the Number of Support Points
Points of Support Men Women
A = 1 11798.0 13631.0
A = 2 6163.1 7563.2
A = 3 6083.5 7452.9
A = 4 6062.9 7422.3

The homogeneous quadratic model was employed in
the estimation.

Table 4: Parameter Estimates for Preferred Model - Men
Type 1 Type 2 Type 3 Type 4

αa
−8.0789
(0.7920)

−5.6632
(0.7537)

−3.7868
(0.7400)

−1.9916
(0.7238)

γa
9.9901
(0.9093)

0.8776
(0.3874)

0.9597
(0.1915)

0.8335
(0.2075)

ρ1
0.3598
(0.3657)

0.3598
(0.3657)

0.3598
(0.3657)

0.3598
(0.3657)

ρ2
3.9879
(4.3498)

3.9879
(4.3498)

3.9879
(4.3498)

3.9879
(4.3498)

pa
0.9907
(0.0055)

0.9578
(0.0655)

0.8757
(0.1387)

0.9999
(0.0001)

πa 0.5353 0.2721 0.1296 0.0630
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Table 5: Parameter Estimates for Preferred Model - Women
Type 1 Type 2 Type 3 Type 4

αa
−6.8666
(0.7049)

−5.5826
(0.6721)

−3.1537
(0.6584)

−1.4090
(0.6586)

γa
9.5925
(1.0865)

0.7514
(0.5424)

0.8067
(0.1340)

0.8779
(0.2033)

ρ1
0.2494
(0.3267)

0.2494
(0.3267)

0.2494
(0.3267)

0.2494
(0.3267)

ρ2
4.4630
(3.8702)

4.4630
(3.8702)

4.4630
(3.8702)

4.4630
(3.8702)

pa
0.9997
(0.0054)

0.9587
(0.0285)

0.8874
(0.0868)

0.7432
(0.2245)

πa 0.4093 0.3495 0.1804 0.0608
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