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1 Introduction

In this paper, we consider the possibility that household demographic variables are measured

with error. Such measurement errors may arise because the bulk of consumption and income

surveys in the world ask households to report their demographic structures at a point-in-time.

These data are then typically used by researchers to proxy for the household’s structure over the

duration of the survey period. However, if the household undergoes any number of demographic

changes such as migration, fertility, mortality, marriage and/or divorce during the survey period

then information reported at the time of data collection may deviate substantially from the

household’s average demographic structure during the period.

To provide readers with some notion of how fluid household structures may induce measure-

ment errors in demographic variables, we use data from the BASIS Panel in El Salvador and the

Panel Study of Income Dynamics (PSID) in the United States to calculate the change in house-

hold size across survey years.1 Figures 1 and 2 show changes in El Salvador and the United

States, respectively. The figures suggest that household structures are fluid. In El Salvador,

fewer than 50% of households experienced no change in household size across survey years. In

the United States, this figure rises to about 83%. We therefore expect measurement errors in

demographic variables to be present for over 50% of households in the Salvadoran data and about

1The BASIS panel covers the years 1997, 1999 and 2001. The PSID data covers the years 1990, 1991, 1992
and 1993.
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17% of households in the American data.

Unfortunately, surveys do not collect information on the household’s demographic structure

at all points-in-time during the survey period. Consequently, researchers are unable to accurately

calculate the household’s average size over the survey period. In this paper, we try to gain some

insight into the extent of this problem. Following Manski (2003), we impose weak assumptions

on the demographic processes which took place within the household during the survey period

and then use these assumptions to derive bounds on expectations of average household size

during the survey period. The derived bounds are sharp which is to say that they cannot be

improved without stronger assumptions. We calculate these bounds using the BASIS panel from

El Salvador, a country in which a large amount of trans-national migration takes place.

Our calculations show that these bounds are often wide. For households with two migrants

residing abroad, these bounds indicate that average household size may fluctuate by more than

one household member. When we consider households with three or more migrants, these

calculations indicate that average household size may fluctuate by more than two household

members. About 15% of the households in our data report having at least two migrants residing

abroad and, thus, these bounds are very wide for a non-trivial portion of our data. One important

caveat is that while large bounds do suggest that measurement errors in household demographics

are important, they are necessary, but not sufficient, for measurement errors to be present.

These findings may have ramifications for recent work by Deaton and Paxson (1998) (DP) who

develop a test for economies of scale within the household. Their test hinges on the observation

that intra-household public goods become cheaper as households become larger; in effect, larger

households are richer conditional on per capita expenditures. Accordingly, if we condition on
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per capita expenditures, we should observe that the consumption of goods with sufficiently high

income effects (such as food in developing countries) increases with household size. However,

DP present comprehensive evidence that directly contradicts this prediction. Moreover, the

contradiction is the strongest for the poorest countries in which we would expect the income

elasticity of food to be the highest.

Measurement errors in household size may be able to explain at least part of the DP paradox.

The reason is that their tests include both per capita consumption expenditures and household

size on the right-hand size of the regression equation. We show that this will induce a bias

in the estimate of the economies of scale coefficient which will be an increasing function of the

coefficient on per capita expenditures. Because Engel’s Law implies that this coefficient is highly

negative, we should expect to see a severe negative bias in the estimate of the economies of scale

coefficient.

The balance of this paper is organized as follows. In Section 2, we formally state the problem.

In the next two sections, we show how weak and strong assumptions allow us to derive bounds

on expectations of average household size during the survey period. In Section 5, we describe

the data. In the next two sections, we discuss estimation and inference issues and then present

our results. In Section 8, we discuss the ramifications of mismeasured household size for the

identification of economies of scale. Section 9 concludes.

2 The Problem

We assume that the household’s decision process unfolds in continuous time. We let N(s) denote

the household’s size at time s. We remain agnostic about the household’s underlying decision
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process and we assume that N(s) ≥ 1 for all s.

Unfortunately, survey instruments only collect data at discrete intervals such as once every

year or every two years. As a consequence, researchers do not observe the quantity N(s) for

all s in any given time interval. This forces researchers to summarize N(s) over discrete time

intervals such as [t− 1, t] or [t, t+ 1].

To help fix ideas, we define the object

N∗
t ≡ E[N(s)|s ∈ [t− 1, t]] (1)

which denotes the average of the household’s size over the interval [t − 1, t]. Note that this

expectation is taken across time for a given household and, thus, there will be a distribution of

N∗
t across households. Because most household surveys do not permit the precise measurement

of N∗
t , researchers typically proxy for the household’s size over the survey period with Nt = N(t)

where t is the time that the survey was administered. Unfortunately, this can be problematic

as the household’s structure often changes during the survey period as a consequence of birth,

death, migration, marriage and/or divorce. In other words, N∗
t and Nt may substantially deviate

from each other. When this occurs, household size will be measured with error which can be

written as

�t = N∗
t −Nt. (2)

If the household’s demographic structure is constant over the time interval so that N(s) = Nt for

all s ∈ [t− 1, t], then there will be no measurement error and, N∗
t = Nt. Otherwise, errors will

be present. This could be particularly problematic for developing countries such as El Salvador
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where there is a tremendous amount of fluctuations in household size as indicated by Figure 1.

3 A Bounds Analysis with Weak Assumptions

We now show how we can use information from our surveys to construct bounds on expectations

of N∗
t . If there are measurement errors in demographic variables then these bounds will be

wide. However, the converse is not true. Thus, wide bounds suggest, but do not imply, that

measurement errors are problematic.

We now introduce some notation. We letMt denote the number of migrants in the household

at the time of the survey, t. We define a migrant to be a household member residing outside of

the household’s dwelling. It is important to note that Nt only includes home dwellers and not

migrants. We let Bt denote the number of births that took place in the household during the

survey year. Finally, we let Dt denote the number of deaths which took place during the survey

year. Throughout this section, we do not address marriage or divorce.

The following identity holds:

Nt = Nt−1 −∆Mt +Bt −Dt. (3)

We emphasize that the quantity∆Mt is net migration. Based on this simple identity, we propose

some sensible assumptions which will allow us to construct bounds on expectations of N(s) for

s ∈ [t− 1, t].

Suppose that the only demographic change that takes place in the household over the survey

period is migration. Then, we will have that Nt−1 = Nt +∆Mt. If ∆Mt > 0, then this implies
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that

Nt < Nt−1 = Nt +∆Mt. (4)

Then we may reasonably assume that N(s) was in the interval [Nt, Nt+∆Mt] for all s ∈ [t−1, t].

We use this logic to make three assumptions on the process for N(s):

N(s) ∈ [Nt −Bt, Nt +Dt] for ∆Mt = 0 and s ∈ [t− 1, t], (W1)

N(s) ∈ [Nt −Bt, Nt +Dt + j] for ∆Mt = j > 0 and s ∈ [t− 1, t] (W2)

and

N(s) ∈ [max{Nt −Bt + j, 1}, Nt +Dt] for ∆Mt = j < 0 and s ∈ [t− 1, t]. (W3)

The lower bound in A3 results from the assumption in Section 2 that the household size is always

positive at any point-in-time. This is the weakest set of assumptions that we employ. In the

next section, we show how a progressively stronger set of assumptions can be used to derive

tighter bounds and, ultimately, achieve point-identification.

It is important to emphasize that these conditions are assumptions and are not simply implied

by the identity in equation (3). To better understand this, we consider a hypothetical scenario

in which the household size was five at the end of the survey period and net migration out of the

household was two during the survey period. For the sake of simplicity, we assume that no births

or deaths took place during the survey period. In this scenario, AssumptionW2 implies thatN(s)

will lie in the interval [5, 7] for all s ∈ [t−1, t]. However, in the absence of Assumption W2, this

need not be the case. Because∆Mt is net migration over a time interval, it may mask movements
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in the household’s demographic structure which occur within time intervals. Going back to our

example, it could be that, just after time t− 1, four members migrate out of the household and

just prior to the end of the survey, at time t, two of these same members subsequently return to

the household. In this hypothetical case, net migration out of the household would still be two.

However, N(s) would be in the interval [3, 7] not [5, 7]. Assumptions W1 through W3 rule out

these types of scenarios.2

These assumptions can easily be used to construct bounds on the conditional expectation of

average household size: E[N∗
t |Wt] where Wt ≡ (Nt,Mt,Dt, Bt). We choose to bound E[N∗

t |Wt]

because many surveys contain information on Wt whereas fewer surveys contain information on

∆Mt. Accordingly, the calculations in this paper shed light on measurement errors in a broader

set of surveys than if we were to also condition on ∆Mt. Finally, it is important to note that

the expectation, E[N∗
t |Wt], is taken over households whereas the expectation, N∗

t , is taken over

time for a given household.

We now derive the bounds in a series of steps. First, we note that the assumptions on N(s)

imply the following bounds on N∗
t :

N∗
t ∈ [Nt −Bt, Nt +Dt] for ∆Mt = 0 (5)

N∗
t ∈ [Nt −Bt, Nt +Dt + j] for ∆Mt = j > 0 (6)

2While we concede that these assumptions may be unrealistic in certain circumstances, they are still far weaker
than the assumption that the household’s demographic structure was constant over the survey period which is an
assumption is employed in the vast majority of studies. Thus, it is impossible to take exception to assumptions
W1 through W3 without taking exception with the implicit assumptions in much of the literature.
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and

N∗
t ∈ [max{Nt −Bt + j, 1}, Nt +Dt] for ∆Mt = j < 0. (7)

Second, we note that, by the Law of Iterated Expectations, we can write

E[N∗
t |Wt] =

X
j

E[N∗
t |∆Mt = j,Wt]P (∆Mt = j|Wt). (8)

Third, conditions (5), (6) and (7) imply that

Nt −Bt ≤ E[N∗
t |∆Mt = j,Wt] ≤ Nt +Dt + j for j > 0, (9)

Nt −Bt ≤ E[N∗
t |∆Mt = j,Wt] ≤ Nt +Dt for j = 0

and

max{Nt −Bt + j, 1} ≤ E[N∗
t |∆Mt = j,Wt] ≤ Nt +Dt for j < 0. (10)

These bounds together with equation (8) give us Proposition 1.

Proposition 1 If the process of N(s) satisfies assumption W1 through W3 then we will have

that

L(Wt) ≤ E[N∗
t |Wt] ≤ U(Wt)

where

U(Wt) ≡ Nt +Dt +
X
j>0

j ∗ P (∆Mt = j|Wt)

9



and

L(Wt) ≡ Nt −Bt +
X
j<0

max{j, 1−Nt +Bt} ∗ P (∆Mt = j|Wt)

An important question is whether or not we can improve upon the bounds in Proposition 1

while only maintaining assumptions W1 through W3. In other words, is there any additional

information contained in our assumptions which would enable us to construct smaller bounds?

The answer is “no.” This is summarized in Proposition 2. A proof can be found in the appendix.

Proposition 2 The bounds in Proposition 1 are sharp in the sense that we can choose any

point Z ∈ [L(Wt), U(Wt)] and provide a process for N(s) that satisfies W1 through W3 such that

E[N∗
t |Wt] = Z.

4 Bounds with Stronger Assumptions

We now use a stronger set of assumptions to derive tighter bounds. To simplify the discussion,

we consider the case where the only source of measurement error is migration. We assume that

N(s) =
max{Nt + j, 1} for s ∈ [t− 1, t− 1 + πj]

Nt for s ∈ (t− 1 + πj, t]

for ∆Mt = j and 0 ≤ πj ≤ pj ≤ 1 (S)

where pj is known, but πj is unknown. This condition places N(s) at either boundary of the

intervals in W1 through W3 for fractions of time equal to πj and 1− πj. This gives us that

N∗
t = πj ∗max{Nt + j, 1}+ (1− πj) ∗Nt for ∆Mt = j. (11)
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Clearly, if we knew πj for all j, we could point-identify E[N∗
t |Wt], but we concede that this is

very unreasonable. A slightly more realistic situation might be that πj is unknown, but pj is

known. This might be the case if, for example, a drought which induced a large out-migration

occurred during the first half of the survey year. In such a scenario, the researcher might assume

that pj = 1
2
for all j. Following steps which are similar to those above, we can derive a new set

of bounds on E[N∗
t |Wt]. The result is summarized in Proposition 3.

Proposition 3 Assume that the only source of demographic change is migration. Then, if the

process for N(s) satisfies S and the probabilities pj are known for all j, we will have that

eL(Wt) ≤ E[N∗
t |Wt] ≤ eU(Wt)

where

eU(Wt) ≡ Nt +
X
j>0

j ∗ pj ∗ P (∆Mt = j|Wt)

and

eL(Wt) ≡ Nt +
X
j<0

max{pj ∗ j, 1−Nt} ∗ P (∆Mt = j|Wt).

A few points are worth noting. First, if pj < 1 for some j, then these bounds will be smaller

than those in Proposition 1. Second, if pj = 1 for all j, then the bounds in Propositions 1 and 2

will be the same. However, this is not surprising since, if we leave πj unconstrained in the unit

interval, we can construct the same values of N∗
t as we would if we only assumed W1 through

W3.

While these bounds are narrower than those in the previous section, they are not that useful

because they require the very strong assumption that all migration for all households took place
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during a specific time interval. This is almost certain to fail in the vast majority of applications.

Consequently, the empirical section of this paper employs the bounds that were derived using

the weaker set of assumptions.

5 The Data

Our main data source is the BASIS panel which was administered by the Fundación Salvadoreña

para el Desarollo Económico y Social (FUSADES) and The Ohio State University. These data

are a sample of rural dwellers. We primarily use the 1999 and 2001 waves of the panel and we

employ data on household size as well as the number of migrants and infants (i.e. children under

12 months) in the household.3 Because these data are longitudinal, we can measure migration

by taking the difference in the household’s migrant stock across survey years. This enables us

to calculate the bounds in Section 3. Descriptive statistics for these data can be found in Table

1.

According to researchers at The Ohio State University, the BASIS survey has a stratified

design with two strata: households with land and households without land. The sample sizes

within strata were determined according to the 1992 census so as to (hopefully) ensure a repre-

sentative sample.4 Consequently, no weighting scheme should be necessary. To the best of our

knowledge, the survey contains no cluster design. However, we acknowledge the possibility that

the observations in the sample are not independent of one another, particularly within small

3We also used the 1997 wave to allow us to measure migration between 1997 and 1999.
4Whether or not the population numbers from the 1992 census are still correct is an open question. Neverthe-

less, if these numbers are incorrect, aside from running a new census, there is little that we can do to determine
the correct numbers.
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geographic units. Accordingly, we use the bootstrap to address any possible issues with the

survey design. Additional detail about this procedure can be found the next section.

In addition, we use the Encuesta de Hogares Propósitos Múltiples (EHPM) which is a con-

sumption survey that is administered annually by the Salvadoran Economic Ministry. In contrast

to the BASIS data, this survey covers both rural and urban households. We use a total of 11696

households from the 2001 survey. These data are used to discuss the impact of mismeasured

household size on the identification of economies of scale within the household. Summary sta-

tistics from the EHPM can also be found in Table 1. Additional detail on the consumption

expenditure data can be found in Appendix 2.

The EHPM has a complex two-stage survey design. In the first stage, the country is divided

into geographical strata. The Salvadoran Economic Ministry used the 1992 census to determine

sample sizes within strata. In the second stage, primary sampling units or clusters were sampled

within each strata. Because it is likely that observations within clusters will be correlated, it

will also be necessary to adjust all standard errors when working with the EHPM.

6 Estimation and Inference

We use two methods to estimate the bounds in Section 3. The first method is the most straight-

forward and involves using the BASIS data to estimate the probabilities, P (∆Mt = j|Wt), with

ordered logit models. We include dummy variables for the household size as well as the number

of migrants and infants in the household.5 These fitted probabilities are then used to back

out U(Wt) and L(Wt). One of the advantages of the ordered logit model is that it is easy to

5 We do not address mortality as the BASIS data do not have adequate information on it.
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implement. Furthermore, the use of ancillary parameters for each migration category provides

us with a flexible way of treating the regression function.6 One of the disadvantages, however,

is that it assumes the size and number of the ancillary parameters are the same for households

of all sizes. This is potentially undesirable because it can produce positive probabilities of large

positive values of ∆Mt for large households and large negative values for small households. In

practice, however, these probabilities are typically small.

Nevertheless, to address this issue, we employ a simple alternative method where we split the

sample into households with five or fewer members and households with more than five members

and estimate the ordered logits separately for each sample. Doing this mitigates the problem of

predicting large positive (negative) values of ∆Mt for larger (smaller) households since the proce-

dure allows the ancillary parameters to vary in size and number with the household’s size. After

estimating the ordered logits on the split sample, we back out the migration probabilities and cal-

culate the bounds just as before. While this method allows for a more flexible parameterization

of the regression function, it should be less efficient than the previous method.7

We calculate the standard errors using the bootstrap.8 We do so for two reasons. First,

calculating the analytical standard errors for these bounds is a rather cumbersome task due to

6We do not use non-parametric estimation due to small sample sizes within the “bins.”
7We did not further sub-divide the sample into smaller sub-samples, however. The reason for this is that,

doing so, involved estimating the ordered logits on rather small sub-samples of the data. These small samples
sometimes resulted in non-convergence of the non-linear maximization routine when we bootstrapped our standard
errors and, therefore, created substantial complications.

8The bootstrapping procedure that we employ works as follows. First, we re-sampled from the data with
replacement. To address the possibility of spatial correlation across households, we re-sampled municipios from
the BASIS data. We re-sampled as many municipios as were present in the data. It is unclear from the
survey’s documentation and our communication with the Ohio State University whether or not the survey had a
cluster design. Nevertheless, to the extent that there is spatial correlation across households in these data, our
calculation of the standard errors will address it provided that there is only correlation across observations within
municipios. Using the re-sampled data, we then calculated the bounds. After this, we re-sampled from the
data again and repeated the process. After 500 replications, we calculated the standard errors of our estimated
bounds.
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the large number of ancillary parameters that are being estimated. Second, bootstrapping allows

us to address any issues concerning the (possibly) complex design of the survey. As pointed out

by Deaton (1997), the bootstrap provides researchers with a convenient, albeit computationally

intensive, means of addressing complex survey designs.

To allow us to make inferences about the unidentified parameter, E[N∗
t |Wt], we construct

confidence bands which were developed by Imbens and Manski (2004). The confidence intervals

that we report cover E[N∗
t |Wt] with at least 95% probability. Note that this is fundamentally

different than covering the identified set, (L(Wt), U(Wt)) , with 95% probability. In general,

the intervals that cover the identified set will be larger than those that cover the unidentified

parameter and, thus, the confidence intervals that we report should be viewed as conservative in

the sense that they will tend to understate any problems associated with measurement errors.

The confidence intervals that we report are

CI0.95 =
h dL(Wt)− CbσSE,L, dU(Wt) + CbσSE,Ui (12)

where bσSE,L and bσSE,U are the respective standard errors of dL(Wt) and dU(Wt) and C satisfies

Φ

Ã
C +

dU(Wt)− dL(Wt)

max hbσSE,L, bσSE,Ui
!
− Φ (−C) = 0.95 (13)

where Φ(.) is the CDF of a standard normal random variable.9 Note that equation (13) has no

analytical solution. However, it is trivial to employ numerical methods to calculate C. These

9Some readers may note that our confidence intervals appear to be slightly different from those in the Imbens
and Manski paper. This is because their intervals are defined in terms of the standard deviations of the estimated
bounds, whereas ours are defined in terms of the standard errors.
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confidence intervals have the desirable property that the probability that they cover E[N∗
t |Wt]

will converge uniformly to 95%.

7 Empirical Results

In this section, we discuss our results. Tables 2 and 3 report the estimated bounds and the 95%

confidence intervals for the unidentified parameters. Table 2 reports the results for households

that have no migrants and one migrant and Table 3 reports the results for households with two

migrants and three or more migrants. In both tables, we only report the results for households

with no infants. We report the results using both methods for estimating the bounds described

in the previous section. We call the first, Method 1, and the second, Method 2. Finally, we

graph the bound estimates in Figures 3 through 10. Figures 3 through 6 use Method 1 and

Figures 7 through 10 use Method 2.

The evidence suggests, not surprisingly, that the width of these bounds has a lot to do with

the number of migrants in the household. In Figures 3 and 7, we see that the bounds are quite

narrow for households that contain no migrants. The results in Table 3 show that the width of

the confidence intervals for these households is on the order of 0.30 household members. Moving

to households with one migrant each in Figures 4 and 8, we see that the bounds are wider.

Calculations in Table 3 show that the width of these confidence intervals is somewhere between

0.60 and 0.90 household members. When we look at households with two migrants in Figures 5

and 9 and three or more migrants in Figures 6 and 10, we see that the situation gets much worse.

In Table 3, the width of the confidence intervals is on the order of 1.5 people for households with

2 migrants and 2.8 people for households with 3 or more migrants. Our results were not affected

16



by our choice of Method 1 or Method 2.

The implications of these findings are significant in our data. Over 30% of the households in

our data report having at least one migrant and over 15% report having at least two migrants.

Consequently, these bounds are quite wide for a large proportion of the households in our data.

We must qualify, once again, that these bounds are necessary but not sufficient for the existence

of a large degree of measurement error in household size. Nevertheless, we believe the facts

that these bounds are sharp and that they can be so wide suggest that measurement errors in

household demographic variables are likely to be a large problem.

8 Implications for Identifying Economies of Scale

We conclude this paper by exploring the implications of mismeasured household size for the

identification of economies of scale within the household. To do this, we consider an Engel curve

of the form:

ωf = α+ β(x− n∗) + γn∗ + ε (14)

where ωf is the share of food in the household’s budget, x is the log of total consumption

expenditures over the survey period and n∗ is the log of N∗ where N∗ is average household

size. We assume that the residual in this equation is uncorrelated with all of the right-hand

side regressors. For the sake of simplicity, throughout this section, we suppress all subscripts.

This specification was first estimated by Working (1943) and has been used extensively in the

literature on household consumer behavior.10 As pointed by Deaton (1997) and Deaton and

10See Lanjouw and Ravallion (1995), Deaton and Paxson (1998) and Deaton and Muellbauer (1986) for some
examples.
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Muellbauer (1980), this Engel curve has the advantage that it fits the data well and is consistent

with optimizing household behavior.

Arguments put forth in a seminal piece by Deaton and Paxson (1998) suggest that γ is a

measure of economies of scale within the household and should be positive in most circumstances.

The foundation of their argument is that public goods within the household become cheaper as the

household’s size increases and, if we hold the household’s per capita expenditures constant, this

effectively makes the household richer. To better understand this consider a situation, discussed

in Deaton and Paxson’s original paper, in which two people decide to move in together. Once

these people are living under one roof, they no longer need to pay two separate rents. Provided

that their incomes remain constant, each individual has in effect become richer.

Deaton and Paxson go on to argue that if the income elasticity of food is sufficiently high,

as it is in the developing world, the household’s consumption of food should increase and we

should expect to see that γ is positive. However, using data from a variety of countries which

run the whole gamut of living standards, they show that the share of food in the household’s

budget actually decreases with household size holding per capita expenditures constant. This

is the exact opposite of what the theory predicts. The authors consider numerous explanations

for their puzzling finding but are ultimately unable to resolve the paradox.11

To better understand the role that mismeasured household size can play in the identification

11In a comment on Deaton and Paxson (1998), Gan and Vernon (2003) claim to resolve the puzzle. The crux of
their argument is that there may be relatively large economies of scale in food consumption and, consequently, it
may be reasonable to see that the share of food expenditures in the household’s budget decreases with household
size. The main reason underlying this assertion is that total household expenditures may include goods that are
potentially more private than food such as clothes. Gan and Vernon provide evidence that as the household’s size
rises, food expenditures as a share of food and housing expenditures also rise. They claim that this resolves the
puzzle since housing is known to be more public than food. However, Deaton and Paxson (2003), in a response to
the comment, assert that Gan and Vernon’s findings are consistent with empirical results in their original piece,
but do nothing to resolve the puzzle. Their fundamental contention with Gan and Vernon’s comment is that it
provides little evidence that there are substantial economies of scale in food consumption.

18



of economies of scale, we first note that, because the household’s size is measured with error,

equation (14) cannot be estimated since n∗ is never observed. Instead, researchers have to

estimate

ωf = α+ β(x− n) + γn+ υ (15)

where n = n∗ − e and υ = ε + (γ − β)e. Clearly, OLS will not yield consistent estimates of β

and γ since υ is correlated with n. Next, we project e onto x and n and obtain

e = κ+ φx+ λn+ u (16)

where u is uncorrelated with both x and n. Because n = n∗ − e, it is reasonable to expect

that λ < 0 since the covariance between n∗ and e will be given by σne = σn∗e − σ2e. In fact, if

the measurement errors are classical in the sense that they are uncorrelated with the true value

of the household’s size, we will have σne = −σ2e < 0. Next, we substitute equation (16) into

equation (15) and we obtain

ωf = eα+ eβx+ eγn+ eυ (17)

where eα ≡ α+ (γ − β)κ, eβ ≡ β + (γ − β)φ, eγ ≡ γ + (γ − β)λ and eυ ≡ ε+ (γ − β)u.

The probability limit of the OLS estimate of the economies of scale parameter is eγ. Accord-
ingly, we can write

p limbeγ = (1 + λ)γ − λβ. (18)

This equation illustrates how mismeasured household size can lead to a failure to identify

economies of scale even when they are present. To better see this, first note that if λ is
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negative, the first term on the right-hand side of the equation will be less than γ and, perhaps,

even negative. Second, Engel’s Law says that the share of food in the household’s budget will

fall as the household becomes richer and, thus, β will be negative. Indeed, in nearly every study

of household consumption behavior involving Working’s Engel curve, estimates of β are always

negative and very large. Accordingly, if λ is negative, the second term in the probability limit

will be negative and potentially large. In this case, tests for the presence of economies of scale

of this type may have low power due to the presence of measurement error in the household’s

size. Moreover, this calculation suggests that negative estimates of γ may occur even when

economies of scale are present. Finally, Deaton and Paxson find that their puzzle is deepest

(i.e. the estimates of γ are the most negative) for the poorest countries. It is interesting that

the poorest countries are also likely to be the ones where household demographic structures are

the most pliable as is suggested by Figures 1 and 2.

We conclude this paper with some prima facie evidence which suggests that OLS estimates

of γ are positively related to β as is suggested by equation (18). To do this, we estimate

ωj
f = αj + βjx+ γjn+

K−1X
k=1

ηjk
Nk

N
+ υj for j = 1, ..., J. (19)

The dependent variable in this equation is the budget share of a particular food item. The food

items that we use are tortillas, bread, rice, milk, beans, chicken, beef, pork, vegetables, fruit and

eggs. The term Nk

N
is the share of the total number of household members in a particular age

and gender category. We report the estimates of γj and βj in Table 4. What can be seen in

the table is that the estimates of γj are related to the estimates of βj. Generally, we see that

food items with higher income elasticities also have higher estimates of γj. To better see this,
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we plot the pairs
³ bγj, bβj´ in Figure 11 which clearly illustrates a strong positive relationship

between the two parameter estimates.12

The results and calculations of this section suggest that mismeasured household size may

help to explain the paradox that Deaton and Paxson originally posed. However, we caution that

we still do not understand the magnitude (or even the sign) of the parameter λ fully. While we

believe that it is reasonable to suspect that λ is negative and potentially large, further work is

warranted.

9 Conclusions

In this paper, we investigated the idea that demographic change can induce errors in the mea-

surement of the household’s composition. To do this, we began by formally defining what it

means to mismeasure the household’s size. We then derived bounds on the household’s size

using weak assumptions on demographic dynamics during the survey period. Estimation using

Salvadoran survey data revealed that these bounds are often wide and, thus, suggested that

there may be a lot of measurement error in variables on household composition. However, we

12There are two alternative explanations for the positive relationship in Figure 11. The first is that goods that
have higher income elasticities also have fewer economies of scale associated with them than the other goods in
the household’s budget. If this were, in fact, the case, then we would see that, as the household’s size increases,
the prices of the other goods in the budget would decrease more rapidly than the goods with the higher income
elasticities. However, if this were true, then these results suggest that there are fewer economies of scale in beef
consumption than in pork consumption. It is unclear to us why this would be the case. The second explanation
for the relationship in the figure has to do with the theory in Deaton and Paxson’s original work. Specifically,
they show that the consumption of a good should increase with the household’s size when the income elasticity
of that good is high relative to the absolute value of its price elasticity. The fact that we find positive estimates
of the economies of scale parameter for goods that are luxuries (or almost luxuries) like beef or pork suggests
that there may be some credence to this. However, working against this explanation is the presumption that the
price elasticity of beef or pork is higher than the price elasticity of staples like tortillas. Unfortunately, without
data on unit prices, there is no way of verifying this presumption. In addition, this argument suggests that the
negative estimates of the economies of scale parameter for tortillas is the result of the absolute value of the price
elasticity of a staple being high relative to its income elasticity which we find to be somewhat hard to believe.
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are careful to point out that the evidence that we present is necessary but not sufficient for the

existence of a large degree of measurement error in demographic variables. We concluded by

showing how mismeasured household size could potentially lead to a failure to identify economies

of scale within the household even when they are present.

This work suggests several avenues for future research. First, an informative exercise would

be to calculate similar bounds using survey data from other countries. We conjecture that

these bounds will be narrower for richer countries where household structures are more likely to

be more stable over time. Second, more work is needed to better understand implications for

the identification of economies of scale and, more generally, for the estimation of Engel curves.

Simple calculations suggest that measurement errors in household size may possibly shed some

light on the paradox posed in Deaton and Paxson (1998). However, we caution the reader that

we view these results as preliminary. Finally, it would be interesting to derive bounds on the

parameters of the Engel curve in equation (14) when household size is mismeasured.13

10 Appendix 1 - Proof of Proposition 2

Proof. The goal of this proof is to produce a set of processes for N(s) for all households that

satisfy assumptions W1 through W3 such that Z = E[N∗
t |Wt] for Z ∈ [Lt(Wt), U(Wt)]. For the

sake of simplicity, we consider the case where the only source of demographic change is migration.

13Hu (2005) derives bounds on the parameters of a linear regression model when one of the regressors contains
non-classical measurement error. However, his methodology is not applicable to our case since it requires
observation of the true regressor (i.e. the regressor without any measurement error) from another data set.
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We begin by writing

E[N∗
t |Wt] = e−J ∗p−J+...+e−1∗p−1+e0∗(1−p−J−...−p−1−p1−...pJ)+e1∗p1+...+eJ ∗pJ (20)

where ei ≡ E[N∗
t |∆Mt = i,Wt] and pi ≡ P (∆Mt = i|Wt). Next, we consider the case where

Z ∈ [Ut(Wt)− pJJ, U(Wt)]. We now choose the following processes for N(s) :

N(s) =
Nt for s ∈ (t− 1, t]

Nt + j for s = t− 1
and ∆Mt = j ≤ 0 (21)

N(s) =
Nt for s = t

Nt + j for s ∈ [t− 1, t)
and 0 < ∆Mt = j < J (22)

We assume that these two conditions hold for all households. These conditions assume that, for

∆Mt < J , the household’s size is constant over a time interval of measure one. Clearly, these

conditions satisfy W1 through W3. These conditions on the N(s) process then give us that

E[N∗
t |Wt] = Nt ∗ (1− pJ) + p1 + 2p2 + ...+ (J − 1)pJ−1 + pJ ∗ eJ (23)

since they hold for all households. If we set the above expression equal to Z, we can then write

eJ as

eJ = Nt + p−1J ∗ [Z − p1 − ...− (J − 1)pJ−1 −Nt]. (24)

Next, noting that

U(Wt) = Nt + p1 + ...+ JpJ , (25)
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and recalling that Z ∈ [Ut(Wt)− pJJ, U(Wt)], we will have that

eJ = E[N∗
t |∆Mt = J,Wt] ∈ [Nt, Nt + J ]. (26)

Finally, we choose

N(s) =
Nt for s ∈ (t− δ, t]

Nt + J for s ∈ [t− 1, t− δ]

for ∆Mt = J (27)

where δ ≡ 1 + Nt−eJ
J

where eJ is defined as in equation (24). Note that δ ∈ [0, 1] since

eJ ∈ [Nt, Nt + J ]. The proof for the other values of Z is completely analogous.

11 Appendix 2 - Consumption Expenditures in the EHPM

The EHPM contains detailed information on consumption expenditures which is summarized in

Table 5. The data on food expenditures as well all expenditures in consumption categories 1

and 2 includes all items purchased on the market, produced at home and received as aid. Total

consumption is the sum of all expenditures in categories 1 and 2 plus expenditures on food,

utilities, schooling and medical care. We did not include expenditures on housing as these data

were suspect.14

14Discussions with a researcher at FUSADES, a Salvadoran think tank, corroborated these suspicions. In
addition, it is important to note that the lack of data on housing expenditures does not impact the analysis
in Section 8. The reason is that our analysis focuses on the biases that measurement error can create when
estimating Engel curves. These biases will be present with or without the housing expenditure data.
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Table 1: Descriptive Statistics
Mean

(Standard Deviation)
BASIS1

Household Size
5.96
(2.68)

Migrants
0.64
(1.32)

Infants
0.06
(0.25)

EHPM2

Total Consumption Expenditures
3044.98
(2223.48)

Household Size
4.44
(2.26)

1The sample size for these data is 1265 households.
2The sample size for these data is 11696.

Table 2: Bounds - Zero or One Migrant, No Infants
HH Size∗

³ dL(Wt), dU(Wt)
´

95% CI for E[N∗
t |Wt]

³ dL(Wt), dU(Wt)
´

95% CI for E[N∗
t |Wt]

Method 1 Method 2
No Migrants

3 (2.708, 3.029) [2.633, 3.043] (2.702, 3.030) [2.615, 3.047]
4 (3.788, 4.049) [3.728, 4.071] (3.777, 4.050) [3.711, 4.077]
5 (4.808, 5.059) [4.752, 5.082] (4.794, 5.060) [4.723, 5.087]
6 (5.725, 6.042) [5.646, 6.062] (5.747, 6.042) [5.672, 6.060]
7 (6.710, 7.041) [6.628, 7.057] (6.731, 7.040) [6.657, 7.057]
8 (7.733, 8.045) [7.636, 8.065] (7.756, 8.044) [7.682, 8.062]
9 (8.726, 9.044) [8.632, 9.070] (8.745, 9.043) [8.668, 9.060]

One Migrant
3 (2.986, 3.502) [2.975, 3.613] (2.983, 3.463) [2.967, 3.576]
4 (3.990, 4.711) [3.982, 4.883] (3.988, 4.650) [3.976, 4.822]
5 (4.992, 5.792) [4.985, 5.944] (4.990, 5.724) [4.978, 5.903]
6 (5.988, 6.640) [5.977, 6.791] (5.990, 6.705) [5.980, 6.864]
7 (6.987, 7.625) [6.976, 7.751] (6.989, 7.684) [6.979, 7.833]
8 (7.988, 8.667) [7.977.8.833] (7.990, 8.736) [7.980, 8.878]
9 (8.988, 9.662) [8.978, 9.822] (8.990, 9.717) [8.979, 9.856]

∗Refers to the household’s reported size at the time of the survey.
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Table 3: Bounds - Two or More than Three Migrants, No Infants
HH Size∗

³ dL(Wt), dU(Wt)
´

95% CI for E[N∗
t |Wt]

³ dL(Wt), dU(Wt)
´

95% CI for E[N∗
t |Wt]

Method 1 Method 2
Two Migrants

3 (2.996, 4.008) [2.991, 4.229] (2.997, 4.144) [2.992, 4.474]
4 (3.997, 5.304) [3.994, 5.557] (3.998, 5.431) [3.995, 5.772]
5 (4.997, 6.415) [4.995, 6.638] (4.998, 6.539) [4.995, 6.848]
6 (5.996, 7.206) [5.993, 7.436] (5.995, 7.104) [5.990, 7.363]
7 (6.996, 8.185) [6.992, 8.400] (6.995, 8.077) [6.990, 8.325]
8 (7.996, 9.244) [7.992, 9.511] (7.996, 9.145) [7.990, 9.387]
9 (8.996, 10.236) [8.993, 10.483] (8.995, 10.120) [8.990, 10.360]

Three or More Migrants
3 (2.999, 5.053) [2.998, 5.470] (2.999, 5.204) [2.999, 5.708]
4 (3.999, 6.505) [3.999, 6.969] (3.999, 6.635) [3.999, 7.187]
5 (4.999, 7.675) [4.999, 8.120] (4.999, 7.799) [4.999, 8.313]
6 (5.999, 8.355) [5.999, 8.831] (5.999, 8.223) [5.998, 8.759]
7 (6.999, 9.323) [6.999, 9.750] (6.999, 9.181) [6.998, 9.714]
8 (7.999, 10.413) [7.999, 10.945] (7.999, 10.286) [7.998, 10.820]
9 (8.999, 11.401) [8.999, 11.965] (8.999, 11.248) [8.998, 11.787]

∗Refers to the household’s reported size at the time of the survey.
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Table 4: Engel Curve Estimatesbβj bγj
Tortillas

−0.072
(−30.71)

−0.014
(−8.03)

Beans
−0.029
(−26.72)

−0.005
(−8.20)

Eggs
−0.023
(−31.85)

−0.006
(−7.85)

Rice
−0.014
(−28.28)

−0.003
(−7.68)

Vegetables
−0.006
(−9.38)

−0.003
(−5.34)

Bread
−0.003
(−2.34)

−0.001
(−0.87)

Chicken
−0.003
(−2.91)

0.002
(2.26)

Milk
−0.001
(−1.28)

−0.000
(−0.36)

Pork
0.000
(0.91)

0.001
(3.37)

Beef
0.004
(4.60)

0.004
(5.02)

Fruit
0.004
(7.64)

−0.001
(−1.58)

∗This table contains OLS estimates of the Engel
curves described in Section 8. All standard errors
allow for clustering on municipios.
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Table 5: Constituents of Consumption Expenditures: EHPM
Component Mean

(Standard Deviation)
Contents

Food
1423.33
(880.54)

tortillas, bread, rice, beans, salt, sugar, grains, chicken,
beef, pork, fish, eggs, milk, cheese, aceite, vegetables,
fruits, restaurant meals, prepared meals, coffee, drinks,
alcohol, other items

Category 1
244.51
(252.65)

toiletries, soap, cleaning products, magazines,
newspapers, cosmetics, fuel, transportation,
babysitting

Category 2
167.26
(343.92)

travel, jewelry, pots, towels, car repairs, other repairs,
appliances, furniture, clothes, glasses

Utilities
461.41
(541.76)

water, electricity, kerosene, propane, candles, carbon,
leña, telephone, cell phone, cable, garbage

School Expenditures
677.80
(984.91)

tuition, supplies, uniforms, textbooks

Medical Expenses
70.68
(320.00)

doctor’s visits, lab work, x-rays, hospital days, medicine

Total Expenses
3044.98
(2223.48)

34




